

ES Project Number 1024-2105

Prepared by:

EnviroScience, Inc. 3781 Darrow Rd Stow OH 44224

Atwell-Hicks Development Consultants

30575 Bainbridge Road, Suite 180 Solon, Ohio 44139

Dr. Diane Hite Professor Department of Agricultural Economics and Rural Sociology Auburn University. 209B Comer Hall Auburn AL 36849

May 2008

Appropriate Citation

Liptak, M., J. Papineau, D. Hite, and J. Kerr. 2008. Tinkers Creek Watershed Comprehensive Wetland Assessment and Prioritization Plan for 2007/2008. EnviroScience, Inc., Stow, OH.

Table of Contents	
Acknowledgments	
Executive Summary	
Abbreviations	
1.0 Introduction	
1.1 Watershed Description	
2.0 Project Purpose and Approach	
3.0 Methods	
3.1 Literature Review	. 3
3.2 Field Investigations	
3.3 Analysis and Assessment	. 4
3.3.1 Ecological Significance	. 5
3.3.2 Hydrological Significance	. 5
3.3.3 Economic Significance	. 7
4.0 Results	10
4.1 Watershed Overview	10
4.2 Ecological Significance	12
4.3 Hydrologic Significance	12
4.4 Economic Significance	13
4.4.1 Housing Value	14
4.4.2 Recreation Value	16
4.4.3 Flood Reduction Benefits	21
4.4.4 Stormwater and Nutrient Retention	26
4.4.5 Permitting Costs for Wetland Impacts	27
4.5 Subwatershed Summaries	
5.0 Discussion and Conclusions	
6.0 Recommendations for Further Analysis	
7.0 References	

Table of Contents

Appendices

Appendix A: Maps Appendix B: Wetland Ranking Results Appendix C: AVGWLF Documentation

Acknowledgments

This report would not have been possible without the help of numerous people and organizations. The project team would like to thank the Cuyahoga County Board of Health and Tinkers Creek Watershed Partners for their support. Marie Sullivan from the Cuyahoga River Remedial Action Plan provided GIS data. Mick Miccachion and John Mack of Ohio EPA provided data from their recent wetland surveys. The staff at the Penn State University Institutes of Energy and the Environment provided valuable assistance with the ArcView Generalized Watershed Loading Function (AVGWLF) model, particularly Kenneth Corradini. This study was funded by a grant from the USEPA.

Executive Summary

The Cuyahoga County Board of Health (CCBH) has commissioned a Comprehensive Wetland Assessment and Prioritization Plan for the Tinkers Creek Watershed in order to inventory and assess the ecological, hydrologic and economic value of wetlands within the entire Tinkers Creek Watershed, from headwaters to the confluence of Tinkers Creek and the Cuyahoga River at Cuyahoga River Mile 16.36.

This Assessment and Prioritization Plan will assist the CCBH in identifying priority areas with high ecological, hydrological and societal economic values so these areas can be managed, preserved or enhanced. It will also help CCBH and local communities explain the values of particular wetlands to the public in measurable terms.

This study will assist local governments and community residents in recognizing the need for prioritizing conservation practices that offer sustainable growth for the community while promoting environmental integrity by developing a wetland assessment and monitoring program.

Wetlands were evaluated using analysis of recent aerial and satellite imagery, available geographic information systems (GIS) data and secondary resources, and limited field verifications of wetlands. A total of 951 wetlands were identified in the Tinkers Creek Watershed with a total acreage of 3.917 ac. Wetlands were ranked according to their ecological, hydrological, and economic values. Ecological values were determined primarily by ORAM Category, ORAM score, and occurrence of threatened or endangered species within the wetland. Hydrological values were obtained using the ArcView Generalized Watershed Loading Function (AVGWLF), a watershed model developed by the Penn State University Institutes of Energy and the Environment. A model of the watershed was run under current conditions, and was run again after all wetlands in the model were replaced by high density urban land use. A second measure of hydrological importance was obtained by calculating the volume of each wetland using regression equations developed by Ohio EPA. Economic importance of wetlands was evaluated by calculating the recreational, property, flood reduction, permitting, mitigation and stormwater retention values for wetlands in the watershed. Tinkers Creek Watershed v Comprehensive Wetland Assessment and Prioritization Plan 2007/2008

Not surprisingly, the larger wetlands had the highest ecological and hydrologic values. The AVGWLF model calculated that, as a whole, wetlands within the Tinkers Creek Watershed reduced stream inputs by over 8,000 acre-feet annually and returned another 8,000 acre-feet to the atmosphere by evapotranspiration. The model showed wetlands as a net sink for water, processing more water through evapotranspiration and retention of surface and ground water than is input to the wetland through direct precipitation. The ratio of water processed to water falling directly on each wetland area was found to be 1.13:1. Based on the size of wetlands, AVGWLF calculated that an acre of wetland in the Tinkers Creek Watershed, on average, retains and processes 3.70 acre-ft water per year. Economic values showed that wetlands in parks had a high societal value for recreation. In fact, recreational value was the largest societal value derived from these calculations. Average calculated values for wetlands in the Tinkers Creek Watershed were \$130,572 per wetland acre outside of parks, and \$361,995 per wetland acre in parks.

Abbreviations

A	area, ac
ac	acre
AmphIBI	Amphibian Index of Biotic Integrity
AVGWLF	ArcView Generalized Watershed Loading Function
B	annual benefit
CBG	census block group
CCAP	Coastal Change Analysis Program
CCBH	Cuyahoga County Board of Health
cfs	cubic feet per second
DNAP	Division of Natural Areas and Preserves
EPA	Environmental Protection Agency
ET	evapotranspiration
ft	feet
G	groundwater loss
GIS	geographic information system
GWLF	Generalized Watershed Loading Function
i	real interest rate
MGD N NOAA NRCS ODNR ORAM OSIP PReDICT R SSURGO USACE USACE USDA USFS USFWS V VIBI	millions of gallons per day nitrogen National Oceanic and Atmospheric Administration Natural Resource Conservation Service Ohio Department of Natural Resources Ohio Rapid Assessment Method for Wetlands Ohio's Statewide Imagery Program's (NOAA) P Pollution Reduction Impact Comparison Tool Runoff Soil Survey Geographic database US Army Corps of Engineers US Department of Agriculture US Forestry Service US Fish and Wildlife Service volume, ac-ft Vegetative Index of Biotic Integrity

1.0 Introduction

The Cuyahoga County Board of Health (CCBH) has commissioned a Comprehensive Wetland Assessment and Prioritization Plan for the Tinkers Creek Watershed (Figure 1.1) in order to inventory and assess the ecological, hydrologic and economic value of wetlands within the entire Tinkers Creek Watershed, from headwaters to the confluence of Tinkers Creek and the Cuyahoga River at Cuyahoga River Mile 16.36.

This Assessment and Prioritization Plan will assist CCBH in identifying priority areas with high ecological, hydrological and societal economic values so these areas can be managed, preserved or enhanced. It will also help CCBH and local communities explain the values of particular wetlands to the public in measurable terms. This study will assist local governments and community residents in recognizing the need for prioritizing conservation practices that offer sustainable growth for the community while promoting environmental integrity by developing a wetland assessment and monitoring program.

1.1 Watershed Description

The following description of the Tinkers Creek Watershed is taken from the Ohio EPA report *Total Maximum Daily Loads for the Lower Cuyahoga River* (2003).

Tinkers Creek is the largest tributary of the Cuyahoga River and drains portions of Portage, Geauga, Summit and Cuyahoga counties. Tinkers Creek has a drainage area of 96.4 square miles and a total length of about 30 miles and enters the Cuyahoga River at RM 16.36. The watershed lies on a glaciated plateau. Soils are mostly silt loam and clayey silt loam. Wetland swamps, bogs and fens are common in the upper watershed. Flows in the lower section of the creek are highly influenced by the discharge of treated wastewater from upstream WWTPs; in 1991 the combined effluent had a median discharge of 11.623 mgd or 17.9 cubic feet per second (cfs). Portions of the stream are on bedrock and form waterfalls which are a natural barrier to fish passage. The lower portions of the stream have formed the Tinkers Creek Gorge which is a National Natural Landmark. Recent acquisitions in the basin by MetroParks Serving Summit County and the Cleveland Metro Parks have increased the amount of protected watershed in the basin. Many local communities are also involved in protecting and acquiring parkland in the basin.

2.0 Project Purpose and Approach

The purpose of the project was to develop a comprehensive wetland inventory for the Tinkers Creek Watershed that would provide a current "snapshot" of wetland acreage, classification, functionality and economic value within the Tinkers Creek basin. This study was conducted to assist local governments and community residents in recognizing the need for prioritizing conservation practices that offer sustainable growth for the community while promoting environmental integrity.

The project consisted of geographic information systems (GIS) analysis of existing data, evaluation of wetland ecological quality through accepted Ohio EPA methods such as ORAM, preparation of a hydrologic model of the watershed to evaluate hydrologic significance of existing wetlands, and an analytical evaluation to evaluate the economic significance of the functions each wetland provides. The project included limited ground-truthing of wetlands that had not been visited for previous studies within the watershed. Wetlands within the watershed were assessed based on the following criteria:

1) Ecological significance, as determined by accepted Ohio EPA methods such as ORAM and VIBI scores;

2) Hydrological significance, as determined by methods using accepted hydrological modeling and wetland storage capacities, and;

3) Economic significance to the watershed and individual communities, as determined utilizing sound economic valuation analysis.

The general project approach is similar to other large-scale evaluations of wetland functions in Ohio. Initial desktop analysis of secondary literature and available data were used to identify wetland areas for field verification and evaluation. Wetland field visits were prioritized for wetlands expected to be highly valuable to their communities in terms of ecosystem function.

3.0 Methods

3.1 Literature Review

The analysis of the project area began by utilizing the data compiled in the 2005 Tinkers Creek Watershed Land Conservation Priority Plan by Kerr+Boron Associates. Available secondary literature was also reviewed and compiled for the project. This information included:

- GIS data from the Tinkers Creek Watershed Land Conservation Priority Plan (Kerr+Boron Associates, 2005)
- Soil data (Soil Survey Geographic (SSURGO) database),
- Aerial imagery (Ohio's Statewide Imagery Program (OSIP), National Oceanic and Atmospheric Administration's (NOAA) Coastal Change Analysis Program (CCAP),
- State and federal wetland inventory data,
- Ohio EPA functional wetland assessment data (ORAM, VIBI, AmphIBI) collected from urban wetlands within the Cuyahoga River watershed (Fennessy et al. 2007),
- ORAM data collected by the Cuyahoga River Remedial Action Plan,
- Threatened and endangered species location information from the Ohio Department of Natural Resources (ODNR), Division of Natural Areas and Preserves,
- Water quality information from Ohio EPA, and
- Census Block Group data from the U.S. Census Bureau

This information was used to determine areas that would require limited field investigations and provided necessary and valuable information to be used in GIS analysis and assessment efforts.

Watershed and subwatershed boundaries obtained from CCBH were examined and compared with existing ODNR data. Boundaries were updated and modified using Environmental Systems Research Institutes' (ESRI) ArcGIS 9.1 software as necessary for the completion of further analyses.

Existing wetland boundary data from Portage, Summit and Cuyahoga counties were compared with high-resolution orthorectified color aerial imagery collected in 2006 (OSIP 2006). Using ArcGIS 9.1, these boundaries were manually updated to reflect their proper locations and shapes, based on the most up-to-date aerial imagery, as necessary.

3.2 Field Investigations

Limited field investigations were performed to update, verify or fill in gaps in existing data. These field investigations were completed following the literature review to avoid duplication of field efforts from previous evaluators. Field investigations included completion of the ORAM if not completed previously, and limited verification of wetland boundaries using aerial imagery analysis.

3.3 Analysis and Assessment

Existing primary and secondary data, as well as data collected during field investigations, were used to assess the values provided by wetlands within the Tinkers Creek Watershed. Data analysis was conducted using a combination of ArcGIS 9.1 and ArcView 3.2 software, both ESRI products. The wetland assessment relied on three key general criteria: ecological significance, hydrological significance, and economic significance. These criteria and the valuation methods associated with each are discussed in detail below.

3.3.1 Ecological Significance

Wetlands' ecological significance were determined primarily by wetland regulatory Category (as determined by ORAM scores), presence of threatened or endangered species, and wetland size. These methods have a great degree of regulatory and public acceptance as methods for evaluating ecosystem function. Limited field verifications were used for some wetlands that did not have assigned ORAM scores. DNAP Natural Heritage Data were used to identify regionally significant wetlands or wetlands with known threatened and endangered species.

3.3.2 Hydrological Significance

Hydrological significance of wetlands within the Tinkers Creek Watershed was evaluated using two methods. The primary method was the ArcView Generalized Watershed Loading Function version 7.1.5 (AVGWLF) as developed by the Penn State Institutes of Energy and the Environment (<u>http://www.avgwlf.psu.edu/</u>). The AVGWLF uses the Generalized Watershed Loading Function model developed by Haith and Shoemaker (1987). This model simulates runoff, sediment, and nutrient loading, based on land cover, soil type, and precipitation. The model is a continuous model that uses a daily time step for weather data and water balance calculations. A detailed description of the AVGWLF is contained in Appendix C.

Daily precipitation and temperature data were obtained from the NOAA National Climatic Data Center (http://www.ncdc.noaa.gov/oa/ncdc.html). As no current data were available from weather stations within the Tinkers Creek Watershed, the Ravenna 2S and Hiram weather stations were chosen for precipitation and temperature data, respectively. Daily data from 1997 to 2006 were examined, and the precipitation data from 1998 and 1999 were used, as they were the closest to the 30-year average. Temperature data from the last 20 years of Hiram data were averaged to provide daily average temperatures for input into the model. Soil data were obtained from the Natural Resource Conservation Service, both from digital and printed Soil Surveys. Land cover data were derived by adding a raster version of the new wetland layer (updated based on 2006 OSIP aerial imagery) to existing CCAP raster data from 2001.

Surface flow is modeled in AVGWLF using the Soil Conservation Service TR-55 method (USDA 1975), using daily temperature and precipitation inputs. Erosion and sediment yield are estimated using monthly erosion calculations based on the Universal Soil Loss Equation algorithm (with monthly rainfall-runoff coefficients) and a monthly composite of KLSCP values for each source area (K=changes in soil loss erosion, LS=length slope factor, C=vegetation cover factor, P=conservation practices factor). A sediment delivery ratio based on watershed size, and a transport capacity based on average daily runoff, are then applied to the calculated erosion to determine sediment yield for each source area. Surface nutrient losses are determined by applying dissolved nitrogen (N) and phosphorus (P) coefficients to surface runoff and a sediment coefficient to the yield portion for each agricultural source area. Point source discharges can also contribute to dissolved losses and are specified in terms of kilograms per month. Manured areas, as well as septic systems, can also be considered. Urban nutrient inputs are all assumed to be solid-phase, and the model uses an exponential accumulation and washoff function for these loadings. Sub-surface losses are calculated using dissolved N and P coefficients for shallow groundwater contributions to stream nutrient loads, and the subsurface sub-model only considers a single, lumped-parameter contributing area. Evapotranspiration is determined using daily weather data and a cover factor dependent upon land use/cover type. Finally, a water balance is performed daily using supplied or computed precipitation, snowmelt, initial unsaturated zone storage, maximum available zone storage, and evapotranspiration values.

Parameter	Method	Time Step	Input	Data Source
Surface Flow	SCS TR-55	daily	Daily temperature and precipitation	NOAA
Erosion	USLE	monthly	Soil type	USDA NRCS
Sediment Yield	KLSCP	monthly	Soil type	USDA NRCS
Nutrient data				Default from model
Land Cover				NOAA CCAP,
				modified by new
				wetland areas

Table 3.1 Summary of AVGWLF Input Data

The AVGWLF model was run under two different scenarios. Initially, the model was run under current conditions to give baseline values. Next, all wetland landcover was converted to impervious surface, and the model was run again. This process was repeated for each subwatershed to provide an estimate of the water and sediment retained by the wetlands in each subwatershed. The volume retained was divided by the total wetland area to give a per-acre measure of water retained by these wetlands for each subwatershed.

The second method of evaluating wetland hydrologic functions used regression equations developed by Ohio EPA for urban wetlands within the greater Columbus area (Gamble et al. 2007).

For Depressional Wetlands: $V = 0.3557 * A^{0.8045}$

For Riverine Wetlands: $V = 0.6468 * A^{1.0992}$

Where V=Volume contained within wetland boundary (ac-ft) and A=Wetland area in ac

These equations were used to estimate the volume of water contained by each wetland. These volumes were also compared with the volume of precipitation that fell directly into the wetlands. The volume of precipitation falling into the wetlands is used as a measure of water retention. In general, this measure is more applicable to depressional wetlands than to riverine wetlands, because riverine wetlands would be expected to export more water through overland flow than would depressional wetlands. However, this method was used for both types of wetlands in the Tinkers Creek Watershed.

3.3.3 Economic Significance

Wetlands provide both market and nonmarket values to the private landowner and to the general public. Since most wetland values are diffuse and to the benefit of the public, the private landowner has little method to recover those market values and thus, little incentive to keep an area as wetland if it could be converted to other, more profitable land uses.

Wetland values can be thought of in four major categories: Direct Use Values, Indirect Use Values, Option Values, and Non-Use Values (Lambert 2003). Direct Use Values are the benefits derived from the using the wetlands directly, for fish production, agricultural use, fuel wood, recreation, hunting and trapping, peat mining, etc. These values can be measured directly using market price analysis and travel cost analysis. The second major category of values is Indirect Use Values, which are the indirect societal benefits derived from wetland functions like nutrient retention, flood control, groundwater recharge, external ecosystem support, increased property values, and shoreline stabilization, among others. These values are generally estimated using replacement costs, damage costs avoided, or hedonic pricing (statistical analysis of housing prices at varying distances from an amenity such as a park or wetland). The third value type is Option Value in which an individual derives benefits from ensuring that a resource will be available for future use. The fourth type, Non-Use Value is derived from the knowledge that a resource is maintained for future generations, even if a person has no uses of the resource. These values are generated from surveys.

Most people understand Direct Use Values and Indirect Use Values and the methods to generate these values, but the public does not generally understand the methods by which Option Values and Non-Use Values are obtained. In addition, initial secondary literature review shows that past wetland valuation studies using various methods have provided a range of economic values, from low (\$4/ac, Hovde 1993; \$14-21/ac, Barbier *et al.* 1997) to mid-range (\$883/ac, Emerton and Kekunlandala 2003; \$5,986/ac, Costanza *et al.* 1997), to high values (\$8,000-\$51,000/ac, Leschine et al. 1997). Amacher *et al.* (1989) found economic values of Great Lakes wetlands ranging from \$22/ac to \$1,475/ac.

These wide ranges of values and methods could lead to public confusion over wetland values in general. While it is possible to evaluate the value of wetlands using surveys and questionnaires, the goal of this project was to develop defensible valuation methods for wetland functions that the public can understand. Therefore, this study focused on those functions of wetlands that the public most readily accepts: flood water storage, property values, and recreational uses such as hunting and park use. The analysis focused on housing values, recreational values, avoided damage costs (flood losses avoided) and replacement costs (the costs for stormwater basins and water treatment facilities to replace the lost hydrologic functions) within the local subwatersheds, as these are the most intuitive societal values that a wetland provides. In addition, the analysis considered current wetland permitting and mitigation costs in money and time. Using these factors, the analysis yielded a per-acre estimate of economic significance of these wetland functions.

The economic valuation method used was similar to that of Leschine *et al.* (1997), who found that the value of wetlands for flood control in Washington State varied between \$8,000-\$12,000 per acre at one site and \$36,000 to \$51,000 at another using the "alternative/substitute cost" method. The Tinkers Creek analysis was not based strictly on flood control but included other methods of valuation as well. For example, Census Bureau property data was used to estimate hedonic values associated with proximity to the wetlands. To provide context for the economic study, a review of the literature on wetlands values was conducted. These literature values provide further support for the calculations of economic value in the watershed. Wetland values were calculated as the value of those functions as provided in perpetuity.

Function	Societal Value or Cost	Method of Calculation		
Flood Storage	Flooding reduced	Replacement cost (stormwater basin construction)		
Flood Storage	Property damage reduction	Damage costs avoided		
Sediment and Nutrient Removal	Water Quality Improvement	Replacement Cost (treatment plant)		
Permit Preparation Costs and Fees	Avoided private costs	Permitting Costs, Fees and Time Costs		
Mitigation Costs	Avoided costs	Mitigation and Monitoring Costs		
Property value	Increased adjacent property values	Hedonic valuation (statistical property values analysis)		
Recreation	Recreational Value	Travel Cost- based on secondary literature research and available local data		

 Table 3.2.
 Summary of Societal Values and Costs

4.0 Results

4.1 Watershed Overview

The Team identified 951 wetlands within the Tinkers Creek Watershed using GIS data and analysis, and available secondary literature sources (Figure 4.1). These 951 wetlands had a total calculated acreage of 3,917 acres, or an average size of 4.11 ac. This is 6.2 percent of the total size of the Tinkers Creek Watershed. If filled to their capacity, these wetlands would hold an estimated 591 acre-feet based on the OEPA regression equation. The basinwide AVGWLF analysis calculated the wetlands as storing and processing a total of 16,006 acre-feet over one year through retention and evapotranspiration, or an average of 4.09 ac-ft per wetland acre per year. This is 27.08 times the calculated volume of the wetlands. EnviroScience visited 57 wetlands totaling 720 acres in size, whose ORAM scores ranged from 24.5 to 96.

Watershed	Communities	Total	%	# of	Ac of	Cat. 1	Cat. 2*	Cat. 3**	Not
		Area,	Imperv.	Mapped	Wetlands	based on	based	Based	Visited
		ac	(KBA	Wetlands		Field Visit	on Field	on Field	
			2005)				Visit	Visit	
Entire Watershed		62,942	18.84%	951	3,917	8	63	115	832
1-Tinkers Creek Confluence	Valley View, Walton Hills	1,572	7.16%	23	34.8	0	1	2	20
2-Wood Creek	Bedford, Maple Heights, Walton Hills	2,336	43.70%	10	5.2	0	1	2	7
3- Deer Lick Run	Oakwood, Bedford, Walton Hills	2,134	31.00%	26	24.1	0	0	8	18
4-Tinkers Creek Gorge	Oakwood, Glenwillow, Solon, Bedford Heights, Bedford, Walton Hills	5,113	24.80%	79	106.2	0	0	34	45
5-Hawthorn Creek	Beachwood, Highland Hills, Warrensville Heights, North Randall, Bedford Heights, Bedford, Maple Heights	3,383	39.25%	17	31.2	0	2	1	14
6-Mud Creek	Solon, Glenwillow, Orange Township	4,470	27.77%	63	107.6	0	8	1	54
7-Beaver Meadow Run	Solon, Oakwood, Bedford Heights, Warrensville Heights, Orange Township, Highland Hills, Beachwood	4,569	27.01%	75	129.0	0	4		71
8-Middle Tinkers Creek	Twinsburg, Twinsburg Township, Macedonia, Oakwood, Glenwillow	12,253	16.59%	166	361.5	0	6	8	152
9-Pond Brook	Aurora, Reminderville, Twinsburg, Twinsburg Township, Solon, Bainbridge Township	10,173	10.37%	219	1035.0	2	12	16	189
10-Tinkers Creek State Park	Aurora, Streetsboro, Hudson Village, Twinsburg Township	4,668	7.97%	90	1012.1	0	4	17	69
11-Hudson Springs	Hudson Village	3,084	12.99%	56	63.0	0	4	0	52
12-Bell Run	Streetsboro, Aurora	5,031	17.37%	98	565.4	6	7	13	72
13-Tinkers Creek Headwaters	Franklin Township, Streetsboro, Hudson Village	4,156	6.16%	96	441.4	0	14	13	69

Table 4.1. Summary Table of Wetland Characteristics in the Tinkers Creek Subwatershed, 2007.

Cumulative subwatershed total number of wetlands exceeds entire watershed figure due to wetlands that crossed subwatershed boundaries.

4.2 Ecological Significance

The wetlands within the Tinkers Creek Watershed make up approximately 6.2% of the entire watershed. Overall, the watershed contains numerous significant wetland resources, including large wetland complexes at several parks. Of the 162 wetlands evaluated in this and previous studies, 93 are Category 3 or 2-3 Gray Zone wetlands, occupying 1432 ac. Sixty-one are Category 2, Modifed 2, or 1-2 Gray Zone wetlands, occupying 702 ac. Eight are Category 1 wetlands, occupying 13 ac. This was not an average sample, as the current study was biased to select high-quality wetlands over low-quality.

4.3 Hydrologic Significance

The AVGWLF model calculated that as a whole, wetlands within the Tinkers Creek Watershed reduced stream inputs by over 8,000 acre-feet annually and returned another 8,000 acre-feet to the atmosphere by evapotranspiration. When compared with high density development, wetlands retained or processed significantly more of the precipitation falling on them. In fact, the model shows wetlands as a net sink for water, processing more water through evapotranspiration and retention of surface water and ground water than is input to the wetland through direct precipitation. The ratio of water processed to water falling directly on each wetland area is 1.13. Based on the size of wetlands, AVGWLF calculated that an acre of wetland on average retains or processes 3.70 acre-ft water per year.

Nutrient and sediment data should be used only with caution, as they are based on average Pennsylvania values from AVGWLF. Nevertheless, the model indicates that wetlands are a net sink for sediment, nitrogen and phosphorus.

When analyzing flows generated by the 24-hour precipitation with a 10-year return interval, wetlands within the Tinkers Creek Watershed retained 3,149 ac-ft (95,561,000 cu. ft.). Based on cost equations for retention and detention basins as discussed in USEPA (1999), and assuming a per retention basin capacity of 170,000 cu. ft., the cost to retain this amount of water in the Tinkers Creek Watershed would be approximately \$81.7 million. This translates to a per-acre value of \$18,933.

Parameter	With Wetlands	No Wetlands	Difference	Total Volume, ac-ft	Volume per wetland acre, ac-ft	Sediment and Nutrient retention Ib/ac
Wetland Area, ac	4,314.5	0	4,314.5			
Precipitation, in	39.32	39.32	0	14,137.2	3.277	
Evapotranspiration, in	14.58	13.07	1.51	7,924.5	1.837	
Groundwater Loss, in	15.69	16.88	-1.19	-6,245.1	-1.447	
Runoff Generated, in	5.92	6.26	-0.34	-1,784.3	-0.414	
Input to Stream, in	21.61	23.15	-1.54	-8,081.9	-1.873	
ET+G+R, in			3.04	15,953.9	3.698	
Erosion, ton	27,606	27,987	-381			-176.6
Sediment, ton	28,333	34,505	-6,172			-2,861.2
Stream Sed, ton	25,932	32,071	-6,139			-2,845.8
Stream N, ton	2,593	3,207	-614			-284.6
Stream P, ton	1,141	1,411	-270			-125.2
Dissolved N, ton	258,506	273,415	-14,909			-6,911.1
Total N, ton	407,027	451,117	-44,090			-20,438.3
Dissolved P, ton	3,540	3,661	-121			-55.9
Total P, ton	22,681	26,237	-3,557			-1,648.6

Table 4.2. Hydrologic Effects of Wetlands within the Tinkers Creek Watershed.

4.4 Economic Significance

Economic significance is discussed in the following sections, but is summarized in the table below in terms of net present value in perpetuity and annual value.

Category	Value in Perpetuity	Per Year Value		
	per Acre of Wetland	(Perpetual Value*0.03)		
	(2007 U.S. Dollars)			
Added Housing Value	\$976	\$29.28		
Public Recreation Value	\$231,423	\$6,943		
(State Parks and Preserve)	(\$5,273 to \$520,523)	(\$158 to \$15,616)		
Avoided Flood Costs	\$663	\$19.89		
Avoided Permitting and Mitigation	\$110,000	\$3,300		
Costs	(\$85,000 to \$135,000)	(\$2,550 to \$4,050)		
Stormwater Basin Replacement	\$18,933	\$567.99		
Costs (Not including water quality				
treatment)				
Sum of Above per-Acre Values and	\$393,470	\$12,058.95		
Avoided Costs	(\$110,845 to \$676,095)	(\$3,325.35 to \$20,282.85)		

 Table 4.3. Economic Values of Wetlands within the Tinkers Creek Watershed.

4.4.1 Housing Value

The presence of natural areas such as wetlands can add to the value of nearby housing. Ideally, to predict the impacts of wetlands on nearby housing values, one would use individual house transaction data to estimate a hedonic house price model. Unfortunately, the collection of such a dataset is prohibitively time consuming, and was outside the scope of this project. Thus, to obtain a rough idea of the potential for wetlands to increase house values, GIS analysis was to combine Census housing data at the Census block group (CBG) level with physical data from the Tinkers Creek Watershed. Because only parts of some of the block groups fell within the watershed, block groups were weighted according to their contribution to the area of the watershed. The result was 103 observations, with the adjusted census block groups covering about 0.95 square miles on average.

The house value model presented in this report was estimated as a simple linear regression, with median value assumed to be a function of house, demographic and physical variables. Each characteristic was viewed as contributing directly to median house values, and the total house value was comprised of the sum of expenditures on individual characteristics. The model was specified as:

$$\begin{split} \text{Median_Value} = &a_0 + a_1 * \%_{\text{Wetlands}} + a_2 * \text{Number_of_Rooms} + \\ &a_3 * \text{Year_House_Built} + &a_4 * \text{Household_Income} + &a_5 * \%_{\text{Urban_Population}} + \\ &a_6 * \text{Population/Sq_Mi} + &a_7 * \text{Low_Slope_Land} + &a_8 * \text{High_Slope_Land} + \\ &a_9 * \text{Longitudinal_CBG_Centroid} + &a_{10} * \text{Latitudinal_CBG_Centroid} + \\ &\epsilon \end{split}$$

Because of linearity, the parameter estimates can be interpreted as the marginal contribution to median value of each the explanatory variables, holding all others constant. More generally, the parameter estimates can be interpreted as 'prices' of the various house, demographic, and physical characteristics. The characteristic of interest to this study is the effect of percentage of wetlands in a CBG towards its associated median house value. Table 4.4 below contains the estimated value function, along with the mean values of the underlying variables.

	Parameter	
Variable Name	Estimate	Mean
Median House Value		\$138,862.14
Intercept	-651,210***	1
Wetland Percentage	5,939***	0.25
Median Number of		
Rooms	26,965***	6.3039
Median Year House	4 500***	4000 70
Built Median Household	1,532***	1966.73
Income	859***	56.85
Urban Population	000	00100
Percentage	-262***	93.11
Population Density		
(persons/mi ²)	-7***	2723.59
Average Slope 25- 70%	2 010***	0.02
	3,919***	0.03
Average Slope<6%	-11,205***	0.05
Distance to Cleveland	-11,171***	15.12
X Coordinate	17,936***	224.99
Y Coordinate	-6,290***	61.82
n =103	R ² =0.845;	F=28,404***

Table 4.4:	Median House	Value Model [*]

^{*}Regression adjusted for CBG areas within Tinker's Creek Watershed

In the house value model, the per unit value of wetlands in a CBG amounts to \$5,939 that is, for every percentage increase in wetlands in a CBG, median house value increases by nearly \$6,000.¹ Although the model has relatively few explanatory variables, it appears to be sensible; for example, urban economic theory suggests house values decrease with distance from employment centers, which we see in the negative price of distance from Cleveland. On the other hand, each room contributes about \$27,000 to the value of the median house.

It is difficult to calculate the overall impact of the wetlands on all the houses in the Tinkers Creek Watershed—this is because data concerning the variance in house

¹ It should be noted that if a CBG consisted of 100% wetland, it would be the case that no house would be built there. In our data, the percentages are sufficiently small compared to the overall area of the CBG that this is not a concern.

values in a CBG were not available, and any assumptions about the distribution could be misleading. Nonetheless, it appears that in the average CBG of 0.95 square miles, increasing wetland area by one percentage point (6.1 ac) would result in about a 4.3% (\$5,939/\$138,862) increase in median house value. To translate this to a per-acre value, a 1-acre increase in wetlands in the average CBG would increase median house value by approximately \$976.

4.4.2 Recreation Value

The Tinkers Creek Watershed is home to natural areas in which a large number of individuals participate in non-consumptive recreation activities, in particular hiking, biking and bird watching; in one case, fishing, a consumptive activity, is available. Chief among these are Bedford Reservation (2,235 ac, of which 1,858 ac, or 83%, is within the Tinkers Creek Watershed boundary), Liberty Park (1,662 ac), Tinkers Creek State Nature Preserve (786 ac), and Tinkers Creek State Park (355 ac). In 2007, Bedford Reservation was visited by an adjusted 514,813 visitors (0.83*620,257) [personal communication, Cleveland Metroparks], Liberty Park in Summit County was visited by 26,650 recreationists (personal communication, Summit County Metroparks); the Tinkers Creek State Nature Preserve was visited by 2,100 individuals (personal communication, ODNR-Division of Natural Areas and Preserves); and the Tinkers Creek State Park was visited by 26,756 individuals (personal communication, ODNR). Thus in total, about 570,319 individuals participated in outdoor recreation in the Tinkers Creek Watershed's public natural areas.

To put a value on recreation in these natural areas, it would be ideal to conduct surveys and estimate a travel cost model. However, such surveys are expensive, and outside the scope of the project. However, it is possible to get a range of estimated lower bound values from secondary sources.

One method that can provide a lower bound on benefits from recreation activities at the natural areas is to calculate the expected expenditures made by recreationists in the watershed's natural areas. The best available expenditure estimate can be obtained

from the US Fish and Wildlife Service (USFWS), which periodically conducts a survey of wildlife-related recreation. The USFWS reports on expenditures for both nonconsumptive (e.g. wildlife/bird watching) and consumptive (e.g. fishing) wildlife-related recreation activities. USFWS do not have specific expenditures for activities such as hiking, but it can be assumed that they will be similar to bird watching.

In 2001, the latest year for which individual state figures are available, per trip expenditures on wildlife related recreation activities was estimated at \$15, or \$17.56² in 2007 dollars. Applying the average per person expenditures to the visitation levels suggests that total expenditures associated with Bedford Reservation within the watershed were about \$9,040,122 in 2007 (0.83*620,257 visitors * \$17.56); those with Liberty Park were approximately \$467,974 in 2007; and total associated expenditures associated with the Tinkers Creek Nature Preserve were about \$36,876 in 2007. Tinkers Creek State Park also provides opportunities for recreational fishing, which adds to the potential value of the site; Ohio anglers' per-trip expenditures in 2007 dollars were \$23.60 per annum. According to the survey, about 33% of those who participated in outdoor recreation were anglers, while 67% were nonconsumptive. Applying these percentages to the 26,756 visitors to Tinkers Creek State Park, it was estimated that about 8,919 engaged in fishing activities while 17,837 engaged in nonconsumptive activities. Thus the expected 2007 annual expenditures at the park would be \$523,706 (\$210,481 for anglers and \$313,218 for others). Summing the above estimates, the total for all recreation expenditures within the Tinkers Creek watershed is thus estimated at \$10,068,676 for 2007.

The problem with per trip expenditures is that they cannot capture economic surplus, which is the amount one is willing to pay over and beyond the actual expenditures made on recreation activities. One source of estimates of recreation values that take such benefits into account can be obtained from a technical report by the US Forest Service

² Obtained from the US Bureau of Labor Statistics' Inflation Calculator <u>http://data.bls.gov/cgi-bin/cpicalc.pl</u> Tinkers Creek Watershed (USFS).³ The USFS document contains a meta-analysis of different types of per-visit, recreation-based benefits, including those for picnicking, hiking, sightseeing, etc. However, the estimates were made for calendar year 2000, so it is necessary to adjust the benefits for inflation to 2007 dollars. Table 4.5 contains selected benefit values from the USFS report, in 2000 and 2007 dollars.⁴

Activity	Value in 2000 U.S. dollars	Value in 2007 U.S. dollars		
Picnicking, Sightseeing,				
Hiking, Wildlife Viewing	\$29.57	\$34.62		
Fishing	\$36.63	\$42.89		
Biking	\$15.27	\$17.88		

Table 4.5: Forecasted United States Average Benefit Values from Meta Analysis

Aside from Bedford Reservation, there is no basis for splitting out bicycling from other nonconsumptive activities, although it is a reasonable assumption that there will be no cycling at the Tinkers Creek State Nature Preserve. It was assumed a maximum of 10% visitors to the other two parks will engage in cycling, thus resulting in cyclist numbers of about 5,341 ((55,506-2,100)*0.10), and 2007 annual benefits of about \$95,490. In addition, for Bedford Reservation data was available on cycling participation, estimated at 17% of 620,257 total visitors; adjusting for the portion of the reservation in the watershed, it was estimated that surplus from cycling at the reservation are \$1,564,827 (0.17*0.83*620,257*\$17.88). This brought total cycling surplus estimates to \$1,660,317 for 2007. Fishing is an available activity at Tinkers Creek State Park; it was assumed, as before, a third of visitors to the site engage in this activity. Thus, the fishing benefit of \$42.89 from Table 2 accrued to 8,919 visitors (26,756/3) for an annual total benefit of \$382,536. All remaining activities were valued at \$34.62 per visit, which was applied to all other visitors-427,295 from Bedford Reservation (620,027*[1-0.17]*0.83), 2,100 from Tinkers Creek State Nature Preserve,

³ Randall S. Rosenberger and John B. Loomis. "Benefit Transfer of Outdoor Recreation Use Values: A Technical Document Supporting the Forest Service Strategic Plan (2000 Revision)", US Department of Agriculture Forest Service. Available online at: <u>http://marineeconomics.noaa.gov/bibsbt/Benefits_Transfer_Guide.pdf</u>.

⁴ Inflation adjustments were made with the Bureau of Labor Statistics' CPI Inflation calculator, available online at: <u>http://data.bls.gov/cgi-bin/cpicalc.pl</u>.

23,985 (26,650*0.9) from Liberty Park, and 15,161 (26,756-2,676 cyclists-8,919 anglers) from Tinkers Creek State Park for a total value of \$16,220,905. Combining all these values resulted in a grand total of about \$18.3 million annual recreation benefits from Tinkers Creek Watershed's natural areas, or an additional \$8.2 million above the expenditures estimated from the USFWS survey.

As demonstrated above, expenditures alone under-represent the benefits enjoyed by recreationists. However, there are additional, regional economic benefits associated with outdoor activities, known as multiplier effects. These are generally estimated using a widely accepted program called IMPLAN, which captures the impact of dollars spent on various activities as they filter through the economy. According to Chang (2001),⁵ IMPLAN multipliers for recreation nationally range from 1.4 to 2.4; a recent study by Ojumu and Hite (2007)⁶ found a 1.7 multiplier for recreational fishing in Alabama. The basic interpretation of these multipliers is that for every dollar spent on recreation, 0.4-1.4 dollars additional are spent in the regional economy. The multiplier effects result from individuals purchasing equipment, gasoline, food, and so on, which then gets paid in salaries and spent by others in the regional economy. Assuming the multiplier effect for the estimated expenditures of \$10,068,676 would be \$4,027,471.

Based on all the above calculations, a conservative annual recreation benefit estimate for the public natural areas associated with Tinkers Creek Watershed wetland areas was found to be \$10,068,676 in direct expenditures, \$18,263,757 in consumer surplus and \$4,027,471 in regional multiplier effects. The total annual benefit is thus \$32,359,903 in 2007 dollars, or on average \$8,142 per ac of preserved parkland (including wetland). It is important to note that average values per park ranged from \$158/ac to \$15,616/ac, and were strongly dependent on number of visitors.

⁵ Chang, Wen-Huei. 2001. "Variations in Multipliers and Related Economic Ratios for Recreation and Tourism Impact Analysis." Unpublished PhD Dissertation, Michigan State University, Lansing, MI.

⁶ Gbenga Ojumu and Diane Hite. 2007. "Economic Impacts of Recreational Fisheries in Alabama's Black Belt." Unpublished report, Auburn University, Auburn, AL.

Park	Park Size (ac)	Visits/ Year	Expenditures	Economic Surplus	Multiplier Effect	Total Benefits	Benefits/ Visits/Yr	Benefits/ ac/yr	Benefits/ac in Perpetuity
Bedford	· · ·		•	•					
Reservation	1,858	514,813	\$9,040,122	\$16,357,781	\$3,616,049	\$29,013,952	\$56.36	\$15,616	\$520,523
Liberty Park	1,662	26,650	\$467,974	\$878,011	\$187,190	\$1,533,175	\$57.53	\$922	\$30,750
Tinkers Creek Nature Preserve	786	2,100	\$36,876	\$72,702	\$14,750	\$124,328	\$59.20	\$158	\$5,273
Tinkers Creek State Park	355	26,756	\$523,704	\$955,263	\$209,482	\$1,688,449	\$63.11	\$4,756	\$158,540
All Parks	4,661	570,319	\$10,068,676	\$18,263,757	\$4,027,471	\$32,359,904	\$56.74	\$6,943	\$231,423

Table 4.6: 2007 Recreational Benefits of Public Lands in the Tinkers Creek Watershed

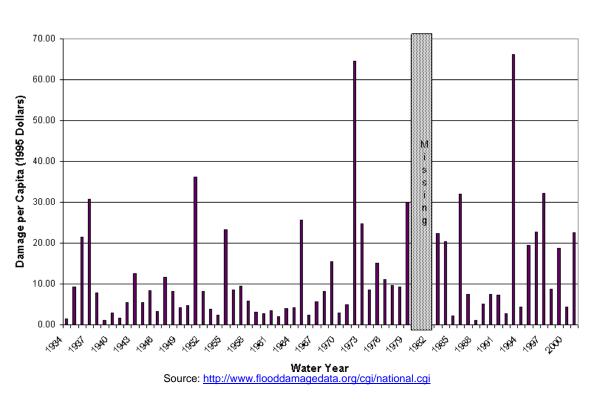
The benefit in perpetuity is given by B/i where *i* is the real interest rate, and *B* is the annual benefit. The typical assumption for real interest rate is 3% per annum, suggesting that the net present value of benefits of recreation in the Tinkers Creek public natural areas is \$1.08 billion (\$32,359,904/0.03), or \$231,423/ac. This level of value is remarkable in light of a 2003 study by the Ohio Environmental Agency⁷ that found the watershed to be "uniquely impaired" by phosphorus and bacteria. The implication is that any improvement in water quality could increase the total value estimated here. For example, Hite et al. (2002)⁸ found that Mississippi residents would be willing to pay an annual tax of about \$47 to get a 10% improvement in water quality.

4.4.3 Flood Reduction Benefits

The wetlands in the Tinkers Creek Watershed have significant potential to mitigate flooding of surrounding areas; for example, a recent study in the US estimated that 0.4 hectares (1 acre) of wetland can store more than 6,000 cubic meters (4.86 acre-feet) of floodwater.⁹ In our study, we found that for every acre of wetland in the Tinkers Creek Watershed, approximately 3.70 acre-feet of water is sequestered or processed.

Average Yearly Rainfall (ft) falling directly on wetland	
footprint (per Acre of Wetland)	3.28
Wetlands Area (Acres)	3,917
Estimated Total Rainfall on Wetland Footprint	
(Acre-Feet per year)	12847.8
Estimated Total Retention and Processing by Wetlands	
from AVGWLF model (Acre-Feet per year)	15,953.9

Table 4.7: Rainfall Sequestration in Tinkers Creek Wetlands¹⁰


⁷ "Total Maximum Daily Loads for the Lower Cuyahoga River Final Report," Ohio Environmental Protection Agency, Division of Surface Water, Sept 2003.


⁸ Hite, D., D Hudson and W. Intarapaong. 2002 "Willingness to Pay for Water Quality Improvements: the Case of Precision Application Technology." Journal of Agricultural and Resource Economics 27(20)433-449.

⁹ Background papers on Wetland Values and Functions, the Ramsar Convention on Wetlands. Available online at <u>http://www.ramsar.org/info/values_floodcontrol_e.htm</u>

¹⁰ Calculated using SAS software and data compiled by Enviroscience, Inc.

Flooding obviously has significant economic consequences. On a per capita basis, in 1995 dollars, the national *per capita* cost of floods has ranged from about \$2 to \$67, as seen in the chart below. In terms of 2007 dollars, the costs are \$2.72-\$91.15, and the damage amounts are trending upward over time.

In Ohio, *total* annual flood damages from 1983-2003 have ranged from zero to over \$300 million dollars per year, which are also trending upward.

There are a number of reasons that flooding damages are increasing. First, more houses are being built in flood plains. Second, houses have increased in size over time. According to Eggers and Thackeray (2007),¹¹ median single-family detached house sizes increased by 10% between 1985 and 2005, and thus the houses embody more value that can be subject to potential damages.

¹¹ F. J. Eggers and A. Thackeray. 2007. "32 Years of Housing Data." Econometrica, Inc. Bethesda, Maryland, available online http://www.huduser.org/datasets/ahs/AHS_taskC.pdf

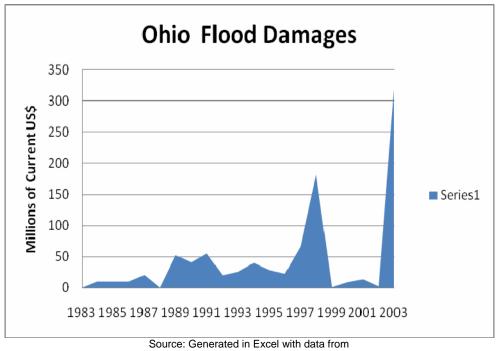


Figure 4.3. Ohio Flood Damages, 1983-2003.

Third, urbanization and increases in impervious surface areas have resulted in less percolation of water through the ground, and have also resulted in rerouting of storm water and surface runoff in unpredictable ways. Finally, and importantly to the current study, wetlands have been filled in during the urbanization process, decreasing sequestration of increased urban runoff. Although exact figures are unavailable to estimate urbanization growth in the Tinkers Creek Watershed, the Cuyahoga River Community Planning Organization reports on its website that urban growth rates of a contiguous watershed (Brandywine Creek) are about 10% annually.¹² Any additional urbanization pressure would make the remaining wetlands in Tinkers Creek a critical feature in flood prevention.

In order to obtain economic benefits of flood mitigation, it was first recognized that house values within flood zones are negatively impacted; because benefits of flood mitigation¹³ are based on house values, it was necessary to adjust average house

¹³ The benefit of flood mitigation is the potential for decreased damage costs.

Tinkers Creek Watershed

http://www.flooddamagedata.org/data/statescurrent65111054-386.txt

¹² <u>http://www.crcpo.org/brandywinecreek.html</u>

values within the flood plains down, and to adjust other house values upward to compensate. To examine the impact of 100 year flood zones in the Tinkers Creek Watershed on houses in the watershed, owner occupied housing was concentrated upon.¹⁴ In the 103 CBGs included that are at least partially in the watershed, it was found that approximately 4,478.95 acres within the 100 year floodplain.¹⁵ Further, in those CBGs, the total value of all owner occupied houses in the Tinkers Creek Watershed was about \$2.4 billion in 2000—a figure that does not include significant commercial, industrial and public property value.

In a 1998 study, the US Army Corps of Engineers (USACE)¹⁶ calculated that a 0.42% chance of flooding would reduce house values by 0.157%; since a 100 year flood zone implies a 1% chance of flooding, it was expected that the sample house values that are in flood plains would be reduced by 0.374%. Further, in the economic analysis, it is important to note that the value reductions were found to be equal to the net present value of expected flood damages.

If house values are decreased in the flood zones, then other values are increased outside the flood zone. Thus, an adjustment was made on CBG total owner occupied house values such that the value inside a flood plain was TV* %_in *(1-0.00374) and that outside was TV- TV* %_in *(1-0.00374), where TV was the total owner occupied house value reported by Census for 2000, %_in was the percentage of the CBG within the watershed that falls in a flood plain, and 1-0.00374 was the estimated amount that houses are discounted according to the USACE study.

¹⁴ We are restricted to housing because of data on the value of other types of property are not readily available. ¹⁵ Within the 100 year flood plains, there are areas of more frequent flooding, which would have larger impacts for property damage; however, we do not have the complete distribution of house values, densities, and flooding frequencies with which to make inferences in this report.

¹⁶ P.T. Chao, J.L. Floyd, W. Holliday. 1998 "Empirical Studies of the Effect of Flood Risk on Housing Prices." US Army Corps of Engineers, Institute for Water Resources REPORT 98-PS-2 Alexandria, VA 22315-3868.

7.14%
0.374%
\$2,410,809,963
\$60,333,788
\$2,350,476,176

 Table 4.8. House Value Adjustments at CBG Level¹⁷

A study by the University of Manitoba Natural Resources Institute found that a 2% increase in wetlands areas would decrease total flood volume in Manitoba's Red River Valley by about 3.7%, or about 1.85% decrease in flood volume for a 1% increase in wetland area.¹⁸ Although precise economic estimates would require sophisticated hydrologic models to understand the relationship between topography and flooding in the Tinkers Creek Watershed, a rough estimate was made on the assumption that there is a one-to-one relationship between flood volume and the frequency of flooding. Thus, a 1% increase in wetland area resulted in a 1.85% decrease in the probability of flooding in houses in the existing flood plain.

To examine the economic impact of decreased flooding frequency, the USACE estimate above was considered and applied to house values in the Tinkers Creek Watershed. As before, 1% flooding probability decreased house values by 0.374%, representing the net present value of the expected damage costs. Thus it is assumed the overall added value of a 1% increase in the wetlands area was 0.692% (1.85%*0.374%) of total adjusted house value from Table 4.7. Therefore, it was expected that the total value of houses in flood zones in Tinkers Creek Watershed would increase by \$417,510 (0.00692*\$60,333,788). This represents the net present value in the watershed of avoided flood damage costs resulting from a 1% decrease in flooding to be gained by increasing wetland areas by 1%.

¹⁷ Calculated using SAS software and data compiled by Enviroscience, Inc.

¹⁸ K. Juliano and S.P. Simonovic. 1999. "The Impact of Wetlands on Flood Control in the Red River Valley of Manitoba." Final Report, Natural Resources Institute University of Manitoba Winnipeg, Manitoba.

Based on a total watershed size of 98.34 square miles, the per-acre value of avoided flood damage costs would be \$663/ac of added wetland. However, it should be noted that this figure is highly conservative for a number of reasons. First, it does not capture avoided flooding costs to commercial and industrial structures; second, it does not capture avoided flooding costs to public infrastructure; finally, the projection is made based on a simplifying assumption that the areal extent of the flood zones stays the same, while it can be said with some certainty that increasing sequestration will decrease the extent of existing flood zones. In addition, it would be desirable to perform a non-marginal calculation, for example, to estimate amount of damage that would occur if the wetlands did not exist and compare that to the amount mitigated by the current wetlands. However, the relationship between flooding, sequestration and damages is highly nonlinear, which would result in a higher degree of error than the estimates reported here.

4.4.4 Stormwater and Nutrient Retention

When analyzing flows generated by the 24-hour precipitation with a 10-year return interval, wetlands within the Tinkers Creek Watershed retained 3,149 ac-ft (95,561,000 cu. ft.). Based on cost equations for retention and detention basins as discussed in USEPA (1999), and assuming a per retention basin capacity of 170,000 cu. ft., the cost to retain this amount of water in the Tinkers Creek Watershed would be approximately \$81.7 million. This translates to a per-acre value of \$18,933.

Using simulations of the impacts of agricultural best management practices on nonpoint source pollution, Intarapapong et al. (2005) found that the marginal cost of sediment reduction ranges from \$0.12 to \$38.54 per ton in 2005 dollars, while the marginal cost of nitrate reduction ranges from \$1.22 to \$9.24 per pound. The increasing marginal costs associated with reducing these pollutants suggest that there is a significant value due to sediment and nitrate impoundment of wetlands. In particular, wetlands can recycle nonpoint source pollution in a way that is much less costly than agricultural producers are able to.

4.4.5 Permitting Costs for Wetland Impacts

Permitting costs in the state of Ohio are rising as permitting and mitigation requirements become more stringent. Typical 2007 costs incurred due to federal and state wetland delineation and permitting requirements have been summarized in the graph below. The graph assumes that all wetlands are under Corps jurisdiction.

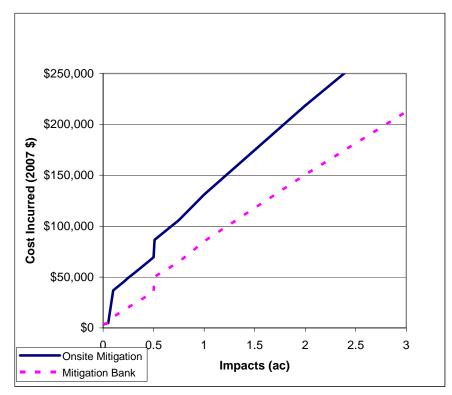


Figure 4.4. Approximate 2007 Permitting Costs for Wetland Impacts.

4.5 Subwatershed Summaries

The following summaries provide additional data for each subwatershed. Political boundaries do not coincide with subwatershed boundaries; therefore, Table 4.9 is provided below.

	City, Village,						
County	Township	Sub-Watershed					
Cuyahoga	Beachwood	Hawthorn Creek (5), Beaver Meadow Run (7)					
- e ery en re ger		Wood Creek (2), Deer Lick Run (3), Tinkers Creek Gorge (4),					
Cuyahoga	Bedford	Hawthorn Creek (5)					
		Wood Creek (2), Tinkers Creek Gorge (4), Hawthorn Creek (5),					
Cuyahoga	Bedford Heights	Beaver Meadow Run (7)					
	01 11	Tinkers Creek Gorge (4), Mud Creek (6), Middle Tinkers Creek					
Cuyahoga	Glenwillow						
Cuyahoga	Highland Hills	Hawthorn Creek (5), Beaver Meadow Run (7)					
Cuyahoga	Maple Heights	Wood Creek (2)					
Cuyahoga	North Randall	Hawthorn Creek (5)					
		Deer Lick Run (3), Tinkers Creek Gorge (4), Beaver Meadow					
Cuyahoga	Oakwood Village	Run (7), Middle Tinkers Creek (8)					
Cuyahoga	Orange	Mud Creek (6), Beaver Meadow Run (7)					
Cuyahoga	Solon	Tinkers Creek Gorge (4), Mud Creek (6), Beaver Meadow Run (7), Middle Tinkers Creek (8), Pond Brook (9)					
		Tinkers Creek Confluence (1)					
Cuyahoga	Valley View	Tinkers Creek Confluence (1) Tinkers Creek Confluenc (1), Wood Creek (2), Deer Lick Run					
Cuyahoga	Walton Hills	(3), Tinkers Creek Gorge (4)					
oujunogu	Warrensville						
Cuyahoga	Heights	Hawthorn Creek (5), Beaver Meadow Run (7)					
	Bainbridge						
Geauga	Township	Pond Brook (9)					
Portage	Aurora	Pond Brook (9), Tinkers Creek State Park (10)					
Portage	Franklin Township	Tinkers Creek Headwaters (13)					
		Tinkers Creek State Park (10), Bell Run (12), Tinkers Creek					
Portage	Streetsboro	Headwaters (13)					
Portage	Sugar Bush Knolls	Tinkers Creek Headwaters (13)					
		Middle Tinkers Creek (8), Tinkers Creek State Park (10),					
Summit		Hudson Springs (11), Bell Run (12), Tinkers Creek Headwaters (13)					
	Hudson Village Macedonia						
Summit		Deer Lick Run (3), Middle Tinkers Creek (8),					
Summit	Northfield	Deer Lick Run (3)					
Summit	Reminderville	Pond Brook (9)					
Summit	Twinsburg	Middle Tinkers Creek (8), Pond Brook (9)					
Summit	Twinsburg Township	Middle Tinkers Creek (8), Pond Brook (9), Tinkers Creek State					
Summu	rownsnip	Park (10)					

 Table 4.9.
 Political Boundaries and Associated Subwatersheds

Table 4.10. Summary of the 2007 Wetland Rankings Results, Showing the 20 Highest Ranking Wetlands in the Tinkers Creek Watershed.

WETLAND ID	ORAM Category	T&E Species?	Managed Area?	Area in Acres	Ecological Rank	AVGWLF Total Volume Processed	Basin Volume (ac-ft)	Hydro Rank (Average)	Economic Value	Economic Rank	Average Rank	Final Rank
103	3	Y	Y	244.868	1	908.5	273.3	1	\$82,053,293	1	1.0	1
820	3	Y	Y	195.150	2	724.0	213.0	2	\$65,402,013	2	2.0	2
810	3	Y	Y	98.143	3	364.1	100.1	3	\$32,912,543	3	3.0	3
633	3	Y	Y	65.514	4	243.1	64.2	5	\$21,984,556	5	4.7	4
144	3	Y	Y	45.096	6	167.3	42.6	12.5	\$15,146,486	8	8.8	5
39	3	Y	Y	37.630	7	139.6	34.9	15.5	\$12,645,917	10	10.8	6
755	3	Y	Y	36.443	8	135.2	33.7	16.5	\$12,248,319	11	11.8	7
145	3	Y	Y	29.743	10	110.3	26.9	21.5	\$10,004,173	13	14.8	8
113	3	Y	N	45.142	5	167.5	42.6	11.5	\$4,714,825	33	16.5	9
782	3	Y	Y	27.190	11	100.9	24.4	26.5	\$9,149,343	16	17.8	10
784	3	Y	Y	24.130	12	89.5	21.4	30.5	\$8,124,604	19	20.5	11
37	3	Y	Ν	36.081	9	133.9	33.3	17.5	\$3,777,037	40	22.2	12
42	3	Y	Y	17.727	14	65.8	15.3	40.5	\$5,979,978	24	26.2	13
82	3	Y	Y	20.103	13	74.6	4.0	66	\$6,775,749	22	33.7	14
38	3	Y	Y	13.121	16	48.7	11.0	50.5	\$4,437,196	36	34.2	15
621	2 MOD	Ν	Y	52.004	94	192.9	49.8	8	\$17,459,993	7	36.3	16
41	3	Y	Y	17.670	15	65.6	3.6	72.5	\$5,961,033	25	37.5	17
279	3	Ν	Ν	50.281	80	186.5	48.0	9	\$5,246,649	28	39.0	18
645	3	Ν	Y	29.294	82	108.7	26.5	23	\$9,853,937	14	39.7	19
634	3	Y	Y	10.290	19	38.2	8.4	62.5	\$3,489,204	42	41.2	20

1-Tinkers Creek Confluence

The Tinkers Creek Confluence subwatershed is 1,572 ac in size, and has a large amount of natural areas for its urban location. The subwatershed has 7.16% impervious surface (Kerr+Boron 2005). There are 23 wetlands within the subwatershed with a total area of 32.1 ac. Of the three wetlands with known ORAM scores, none were Category 1, two were Category Modified 2 or Category 2, and one was Category 3.

2-Wood Creek

The Wood Creek subwatershed is 2,336 ac in size. The subwatershed has 43.70% impervious surface (Kerr+Boron 2005). There are 10 wetlands within the subwatershed with a total area of 5.2 ac. Of the three wetlands with known ORAM scores, none were Category 1, two were Category Modified 2 or Category 2, and one was Category 3. Wetlands within the subwatershed retain and process a total of 33.1 ac-ft of water per year, for an average retention of 2.67 ac-ft per acre of wetland per year.

3-Deer Lick Run

The Deer Lick Run subwatershed is 2,134 ac in size. The subwatershed has 31.00% impervious surface (Kerr+Boron 2005). There are 26 wetlands within the subwatershed with a total area of 24.1 ac. Of the eight wetlands with known ORAM scores, all eight were classified as Category 3. Wetlands within the subwatershed retain and process a total of 90.7 ac-ft of water per year, for an average retention of 3.33 ac-ft per acre of wetland per year.

4-Tinkers Creek Gorge

The Tinkers Creek Gorge subwatershed is 5,113 ac in size. The subwatershed has 24.80% impervious surface (Kerr+Boron 2005). There are 79 wetlands within the subwatershed with a total area of 106.2 ac. Of the 34 wetlands with known ORAM scores, all were Category 3. Wetlands within the subwatershed retain and process a total of 447.4 ac-ft of water per year, for an average retention of 3.55 ac-ft per wetland acre per year.

5-Hawthorn Creek

The Hawthorn Creek subwatershed is 3,383 ac in size. The subwatershed has 39.25% impervious surface (Kerr+Boron 2005). There are 17 wetlands within the subwatershed with a total area of 31.2 ac. Of the three wetlands with known ORAM scores, 0 were Category 1, two were Category Modified 2 or Category 2, and one was Category 3. Wetlands within the subwatershed retain and process a total of 104.3 ac-ft of water per year, for an average retention of 3.25 ac-ft of water per acre wetland per year.

6-Mud Creek

The Mud Creek subwatershed is 4,470 ac in size. The subwatershed has 27.77% impervious surface (Kerr+Boron 2005). There are 63 wetlands within the subwatershed with a total area of 107.6 ac. Of the nine wetlands with known ORAM scores, none were Category 1, eight were Category Modified 2 or Category 2, and one was Category 3. Wetlands within the subwatershed retain and process a total of 458.2 ac-ft of water per year, for an average retention of 3.57 ac-ft water per wetland acre per year.

7-Beaver Meadow Run

The Beaver Meadow Run subwatershed is 4,569 ac in size. The subwatershed has 27.01% impervious surface (Kerr+Boron 2005). There are 75 wetlands within the subwatershed with a total area of 129 ac. Of the All four wetlands with known ORAM scores were Category Modified 2 or Category 2. Wetlands within the subwatershed retain and process a total of 468.3 ac-ft of water per year, for an average retention of 3.64 ac-ft per wetland acre per year.

8-Middle Tinkers Creek

The Middle Tinkers Creek subwatershed is 12,253 ac in size. The subwatershed has 16.59% impervious surface (Kerr+Boron 2005). There are 166 wetlands within the subwatershed with a total area of 361.5 ac. Of the 14 wetlands with known ORAM scores, none were Category 1, six were Category Modified 2 or Category 2, and eight were Category 3. Wetlands within the subwatershed retain and process a total of

1459.3 ac-ft of water per year, for an average retention of 3.58 ac-ft of water per wetland acre per year.

9-Pond Brook

The Pond Brook subwatershed is 10,173 ac in size. The subwatershed has 10.37% impervious surface (Kerr+Boron 2005). There are 219 wetlands within the subwatershed with a total area of 1,035 ac. Of the 30 wetlands with known ORAM scores, two were Category 1, 12 were Category Modified 2 or Category 2, and 16 were Category 3. Wetlands within the subwatershed retain and process a total of 3967.5 ac-ft of water per year, for an average retention of 3.73 ac-ft per wetland acre per year.

10-Tinkers Creek State Park

The Tinkers Creek State Park subwatershed is 4,668 ac in size. The subwatershed has 7.97% impervious surface (Kerr+Boron 2005). There are 90 wetlands within the subwatershed with a total area of 1,012 ac. Of the 21 wetlands with known ORAM scores, none were Category 1, four were Category Modified 2 or Category 2, and 17 were Category 3. Wetlands within the subwatershed retain and process a total of 3789.9 ac-ft of water per year, for an average retention of 3.58 ac-ft of water per wetland acre per year.

11-Hudson Springs

The Hudson Springs subwatershed is 3,084 ac in size. The subwatershed has 12.99% impervious surface (Kerr+Boron 2005). There are 56 wetlands within the subwatershed with a total area of 63.0 ac. All four wetlands with known ORAM scores were Category 2 wetlands. Wetlands within the subwatershed retain and process a total of 275.0 ac-ft of water per year, for an average retention of 3.59 ac-ft of water per wetland acre per year.

12-Bell Run

The Bell Run subwatershed is 5,031 ac in size. The subwatershed has 17.37% impervious surface (Kerr+Boron 2005). There are 98 wetlands within the subwatershed

with a total area of 565.4 ac. Of the 26 wetlands with known ORAM scores, six were Category 1, seven were Category Modified 2 or Category 2, and 13 were Category 3. Wetlands within the subwatershed retain and process a total of 1916.0 ac-ft of water per year, for an average retention of 2.97 of water per wetland acre per year.

<u>13-Tinkers Creek Headwaters</u>

The Tinkers Creek Headwaters subwatershed is 4,156 ac in size. The subwatershed has 6.16% impervious surface (Kerr+Boron 2005). There are 96 wetlands within the subwatershed with a total area of 441.4 ac. Of the 27 wetlands with known ORAM scores, none were Category 1, 14 were Category Modified 2 or Category 2, and 13 were Category 3. Wetlands within the subwatershed retain and process a total of 2033.0 ac-ft of water per year, for an average retention of 3.69 ac-ft of water per acre wetland per year.

5.0 Discussion and Conclusions

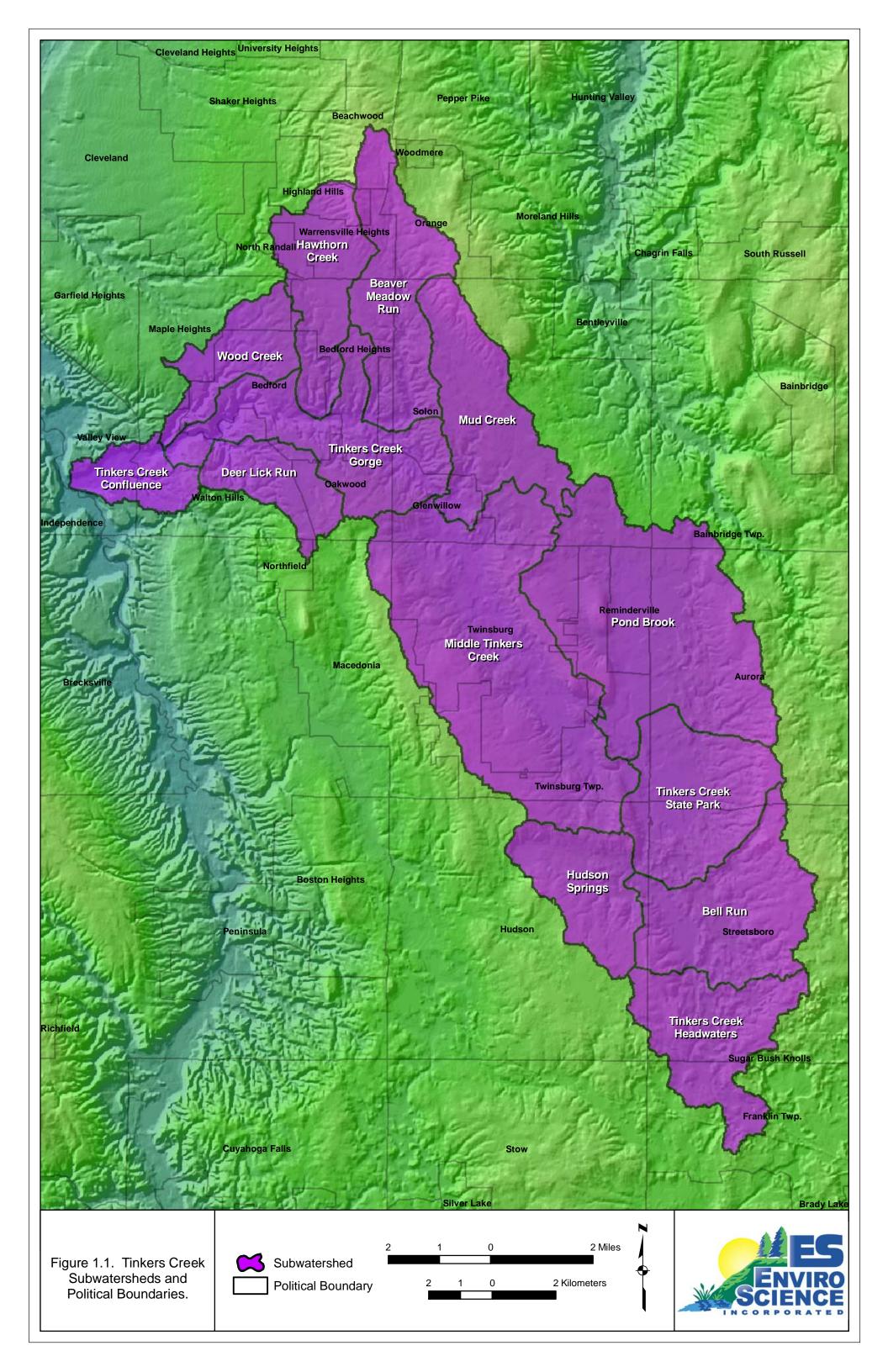
The analysis shows that despite the rapid growth within the watershed, the Tinkers Creek Watershed contains significant wetland resources whose ecosystem functions provide a high societal value. As expected, the major predictor of hydrologic and ecological wetland values within the watershed was wetland size. Larger wetlands contained and removed larger flows of water than smaller wetlands. The role of evapotranspiration in the wetland hydrologic cycle is extremely important. Evapotranspiration was often equal to the retention of surface and groundwater, essentially doubling the water storage capacity of the wetlands.

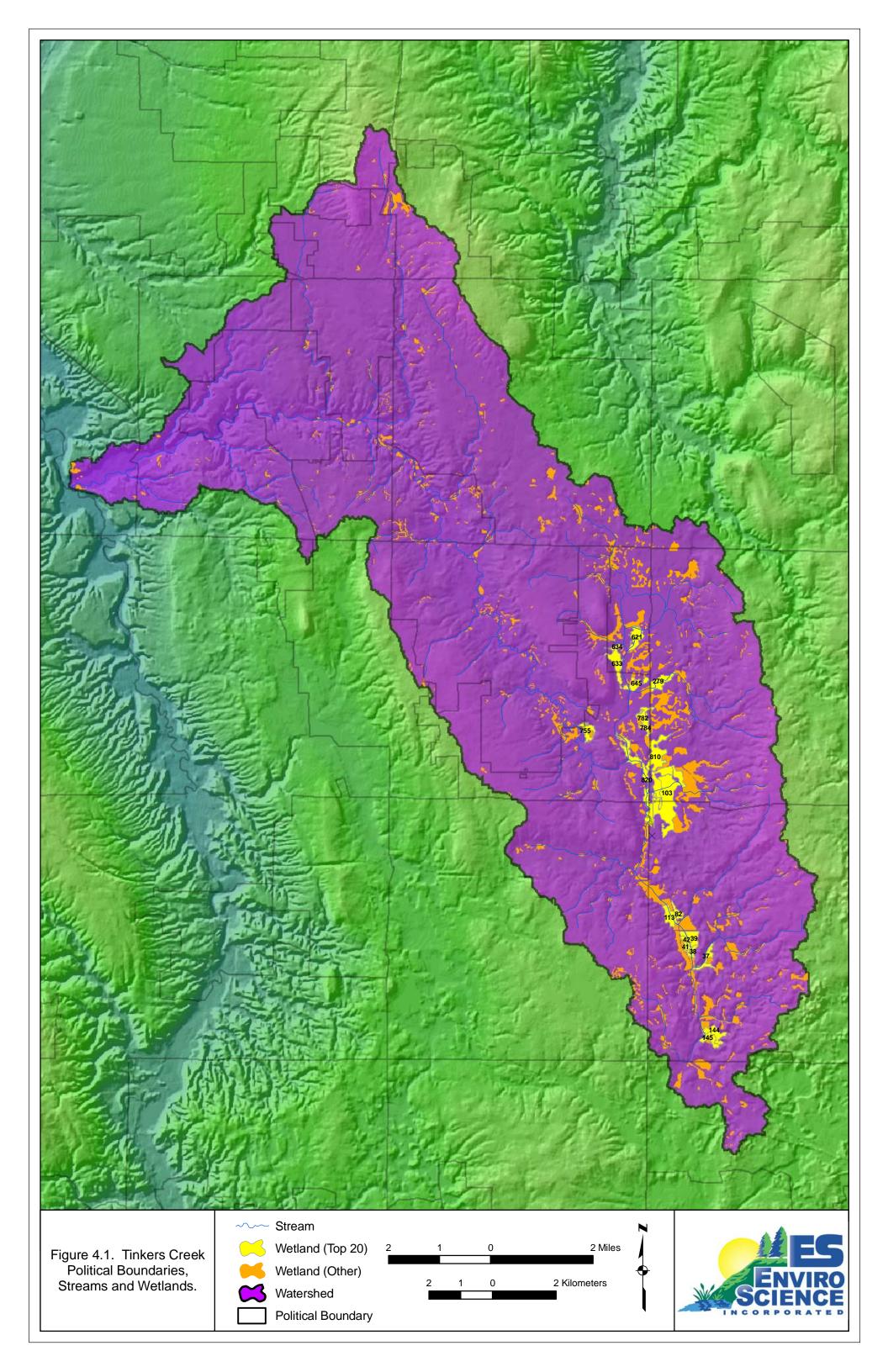
Economic valuation methods for wetlands can rarely include the value of all functions provided by the wetlands. The major value of wetlands from an economic standpoint came from their recreational value, stormwater retention capabilities, and avoided permitting and mitigation costs. High value wetlands were often found to be protected by parks, but several unprotected high-quality wetlands remain in the Tinkers Creek Watershed, particularly Wetlands 33, 37, 113, 279, and 996.

6.0 Recommendations for Further Analysis

Output from the AVGWLF model can be used with another Penn State University Tool) product called PRedICT (Pollution Reduction Impact Comparison [http://www.predict.psu.edu/overview.htm]. This companion software tool would allow CCBH to create various scenarios comparing current watershed conditions modeled in this study with conditions following implementation of best management practices throughout the watershed. The PRedICT tool allows the user to calculate not only the reduction in pollutants, but also the costs of implementation so that a user can identify the most cost-effective and efficient pollution reduction strategy. Input of data from identified point sources in the watershed would improve model accuracy and utility.

7.0 References


- Amacher, G.S., R.J. Brazee, J.W. Bulkley and R.W. Moll. 1988. An Interdisciplinary Approach to Valuation of Michigan's Coastal Wetlands. School of Natural Resources, University of Michigan, Ann Arbor, Michigan.
- Barbier, E.B., M. Acreman, and D. Knowler. 1997. Economic Valuation of Wetlands, A Guide for Policy Makers and Planners. Ramsar Convention Bureau, Gland, Switzerland.
- Chang, Wen-Huei. 2001. Variations in Multipliers and Related Economic Ratios for Recreation and Tourism Impact Analysis. Unpublished PhD Dissertation, Michigan State University, Lansing, MI.
- Chao, P.T., J.L. Floyd, W. Holliday. 1998 "Empirical Studies of the Effect of Flood Risk on Housing Prices." US Army Corps of Engineers, Institute for Water Resources REPORT 98-PS-2 Alexandria, VA 22315-3868.
- Costanza, R., R. d'Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O'Neill, J. Paruelo, R. G. Raskin, P. Sutton, M. van den Belt. 1997. The value of the world's ecosystem services and natural capital. Nature, 387(6230):255.
- Eggers, F. J. and A. Thackeray. 2007. 32 Years of Housing Data. Econometrica, Inc. Bethesda, Maryland.
- Emerton, L., and L. D. C. B. Kekulandala. 2003. Assessment of the Economic Value of Muthurajawela Wetland. Occ. Pap. IUCN, Sri Lanka., 4:iv + 28pp.
- Fennessy, M. S., J. J. Mack, E. Deimeke, M. T. Sullivan, J. Bishop, M. Cohen, M. Micacchion and M. Knapp. 2007. Assessment of wetlands in the Cuyahoga River watershed of northeast Ohio. Ohio EPA Technical Report WET/2007-4. Ohio Environmental Protection Agency, Division of Surface Water, Wetland Ecology Group, Columbus, Ohio.
- Gamble, D., E. Grody, J. Undercoffer, J. J. Mack, and M. Micacchion. 2007. An ecological and functional assessment of urban wetlands in central Ohio. Volume 2: morphometric surveys, depth-area-volume relationships and flood storage function. Ohio EPA Technical Report WET/2007-3B. Ohio Environmental Protection Agency, Wetland Ecology Group, Division of Surface Water, Columbus, Ohio.
- Haith, D.A. and L.L. Shoemaker, 1987. Generalized Watershed Loading Functions for Stream Flow Nutrients. Water Resources Bulletin, 23(3), pp. 471-478.


- Hovde, Brett. 1993. Dollar Values of Two Prairie Potholes. M.S. thesis, North Dakota State University, Fargo.
- Juliano, K. and S.P. Simonovic. 1999. The Impact of Wetlands on Flood Control in the Red River Valley of Manitoba. Final Report, Natural Resources Institute University of Manitoba Winnipeg, Manitoba.
- Kerr+Boron Associates. 2005. Tinkers Creek Watershed Land Conservation Priority Plan.
- Hite, D., D Hudson and W. Intarapaong. 2002. Willingness to Pay for Water Quality Improvements: the Case of Precision Application Technology. Journal of Agricultural and Resource Economics 27(20)433-449.
- Intarapapong, Walaiporn, Diane Hite, and Murat Isik. 2005. "Optimal Profits under Environmental Constraints: Implications of Total Maximum Daily Load Standards." Journal of the American Water Resources Association 41(6):1361-1376.
- Lambert, A. 2003. Economic valuation of wetlands: an important component of wetland management strategies at the river basin scale. Ramsar Convention, May 2003.
- Leschine, T.M., K.F. Wellman, and T.H. Green. 1997. The economic value of wetlands: wetlands' role in flood protection in western Washington. Washington State Department of Ecology, Northwest Regional Office, Bellevue, Washington.
- Mack, J. J. and M. Micacchion. 2007. An ecological and functional assessment of urban wetlands in central Ohio. Volume 1: condition of urban wetlands using rapid (level 2) and intensive (level 3) assessment methods. Ohio EPA Technical Report WET/2007-3A. Ohio Environmental Protection Agency, Wetland Ecology Group, Division of Surface Water, Columbus, Ohio.
- Ohio Environmental Protection Agency, Division of Surface Water. 2003. Total Maximum Daily Loads for the Lower Cuyahoga River Final Report. Ohio Environmental Protection Agency, Division of Surface Water, Columbus, Ohio.
- Ojuma, Gbenga and Diane Hite. 2007. Economic Impacts of Recreational Fisheries in Alabama's Black Belt. Unpublished report, Auburn University, Auburn, AL.
- Rosenberger, Randall S. and John B. Loomis. 2000. Benefit Transfer of Outdoor Recreation Use Values: A Technical Document Supporting the Forest Service Strategic Plan (2000 Revision). US Department of Agriculture Forest Service.
- SCS. 1975. Technical Release 55 (TR-55) Urban Hydrology for Small Watersheds. Soil Conservation Service, Washington DC.

- USEPA. 1999. Preliminary data summary of urban storm water best management practices (EPA-821-R-99-012). US Environmental Protection Agency, Office of Water.
- U.S. Bureau of Labor Statistics. 2008. CPI Inflation calculator.

Online Resources

http://data.bls.gov/cgi-bin/cpicalc.pl http://marineeconomics.noaa.gov/bibsbt/Benefits_Transfer_Guide.pdf http://ogrip.oit.ohio.gov/ServicesData/StatewideImagery/tabid/86/Default.aspx http://www.avgwlf.psu.edu/ http://www.predict.psu.edu/overview.htm http://www.crcpo.org/brandywinecreek.html http://www.csc.noaa.gov/crs/lca/ccap.html http://www.flooddamagedata.org/cgi/national.cgi http://www.flooddamagedata.org/data/statescurrent65111054-386.txt http://www.huduser.org/datasets/ahs/AHS_taskC.pdf http://www.iwr.usace.army.mil/inside/products/pub/iwrreports/98ps2.pdf http://www.ncdc.noaa.gov/oa/ncdc.html http://www.ramsar.org/info/values_floodcontrol_e.htm http://www.soils.usda.gov/survey/geography/ssurgo/ Appendix A: Maps

Appendix B: Wetland Ranking Results

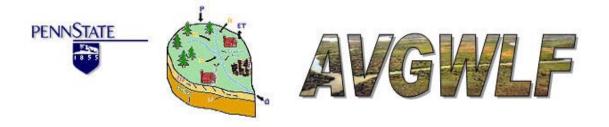
WETLAND ID	Centroid Longitude -81.3850784	Centroid Latitude 41.2771873	ORAM Category 3	T&E Species? Y	Managed Area? Y	Area in Acres 244.868	Ecological Rank 1	AVGWLF Total Volume Processed 908.5	Basin Volume (ac- ft) 273.3	Hydro Rank (Average) 1	E	conomic Value \$82,053,293	Economic Rank	Average Rank	Final Rank
820 810	-81.3926428 -81.3893133	41.2824018 41.2899776	3	Y Y	Y Y	195.150 98.143	2	908.5 724.0 364.1	213.0 100.1	2		\$65,402,013 \$32,912,543	2	2.0 3.0	2
633 144	-81.4041990 -81.3670091	41.3148977 41.2106778	3	Y Y	Y	65.514 45.096	4	243.1	64.2 42.6	5 12.5		\$21,984,556 \$15,146,486	5	4.7 8.8	4
39 755	-81.3755798 -81.4152505	41.2375318 41.2963913	3	Y Y	Y Y	37.630 36.443	7 8	139.6 135.2	34.9 33.7	15.5		\$12,645,917 \$12,248,319	10 11	10.8 11.8	6 7
145 113	-81.3688188 -81.3841345	41.2090188 41.2439400	3	Y Y	Y	29.743 45.142	10 5	110.3 167.5	26.9 42.6	21.5		\$10,004,173 \$4,714,825	13 33	14.8 16.5	8
782 784	-81.3944820 -81.3932820	41.2999331 41.2998229	3	Y Y	Y	27.190 24.130	11 12	100.9	24.4	26.5 30.5		\$9,149,343 \$8,124,604	16 19	17.8 20.5	10 11
37 42	-81.3702592 -81.3779322	41.2319273 41.2375569	3	Y Y	N Y	36.081 17.727	9 14	133.9 65.8	33.3 15.3	17.5 40.5		\$3,777,037 \$5,979,978	40 24	22.2 26.2	12 13
82 38	-81.3812860 -81.3753074	41.2451188 41.2340240	3 3	Y Y	Y Y	20.103 13.121	13 16	74.6 48.7	4.0 11.0	66 50.5		\$6,775,749 \$4,437,196	22 36	33.7 34.2	14 15
621 41	-81.3973273 -81.3783088	41.3229874 41.2358818	2 MOD 3	N Y	Y Y	52.004 17.670	94 15	192.9 65.6	49.8 3.6	8 72.5		\$17,459,993 \$5,961,033	7 25	36.3 37.5	16 17
279 645	-81.3878711 -81.3968134	41.3104554 41.3099199	3 3	N N	N Y	50.281 29.294	80 82	186.5 108.7	48.0 26.5	9 23		\$5,246,649 \$9,853,937	28 14	<u>39.0</u> <u>39.7</u>	18 19
634 996	-81.4049953 -81.4065089	41.3202131 41.3458872	3 2-3 GRAY	Y N	Y N	10.290 57.131	19 91	38.2 212.0	8.4 55.2	62.5 7		\$3,489,204 \$5,955,581	42 26	41.2 41.3	20 21
184 278	-81.3768015 -81.3962488	41.2816632 41.3153961	2 3	N N	Y Y	80.391 42.341	120 81	298.2 157.1	80.3 7.2	4 39		\$26,967,106 \$14,223,487	4 9	42.7 43.0	22 23
969 185	-81.3957478 -81.3734248	41.3282309 41.2857272	3 2	N N	Y Y	25.186 64.833	83 121	93.4 240.5	22.4 63.4	29.5 6		\$8,478,250 \$21,756,656	18 6	43.5 44.3	24 25
36 619	-81.3755211 -81.4140408	41.2310867 41.3241654	3	Y N	Y Y	9.606 23.054	20 84	35.6 85.5	7.8 20.4	68.5 31.5		\$3,260,019 \$7,764,110	46 20	44.8 45.2	26 27
92 33	-81.3785231 -81.3596520	41.2703330 41.2346564	3 2 MOD	N N	Y N	20.798 34.147	85 95	77.2 126.7	18.2 31.3	33.5 18.5		\$7,008,507 \$3,576,907	21 41	46.5 51.5	28 29
646 785	-81.3937181 -81.3926348	41.3076592 41.2934545	3 3	N Y	Y Y	15.751 8.417	86 24	58.4 31.2	13.4 6.7	44 80		\$5,318,165 \$2,861,863	27 54	52.3 52.7	30 31
148 380	-81.3695564 -81.4928225	41.2187466 41.3776820	2 MOD 3	N Y	N Y	33.183 8.121	96 25	123.1 30.1	30.4 6.5	20.5 82		\$3,477,111 \$2,762,729	44 55	53.5 54.0	32 33
547 616	-81.4869941 -81.4047981	41.4458437 41.3244888	2 2	N N	N Y	44.641 27.058	122 125	165.6 100.4	42.1 24.3	13.5 27.5		\$4,663,020 \$9,105,106	34 17	56.5 56.5	34 35
81 579	-81.3784014 -81.4915242	41.2421411 41.3792930	2-3 GRAY 3	N Y	N Y	25.951 9.000	92 21	96.3 33.4	23.2 2.1	28.5 117		\$2,728,693 \$3,057,018	56 49	58.8 62.3	36 37
783 744	-81.3957509 -81.4227119	41.2989503 41.2957443	3	Y N	Y Y	8.792 34.138	22 166	32.6 126.7	2.0 31.3	118.5 19.5		\$2,987,570 \$11,476,392	50 12	63.5 65.8	38 39
568 187	-81.4844293 -81.3801602	41.3525023 41.2908749	2 2 MOD	N N	N N	28.447 18.724	124 98	105.5 69.5	25.6 16.2	24 36.5		\$2,987,016 \$1,980,715	51 67	66.3 67.2	40 41
861 3	-81.3899912 -81.3713463	41.2511898 41.2020119	2 MOD	N N	N N	47.611 27.266	163 97	176.6 101.2	45.2 5.1	10 54		\$4,970,361 \$2,864,721	30 53	67.7 68.0	42 43
210 93	-81.3803186 -81.3815811	41.3124150 41.2701439	2 MOD	N N	N Y	18.026 27.247	99 167	66.9 101.1	15.5 24.5	37.5 25.5		\$1,908,465 \$9,168,323	69 15	68.5 69.2	44 45
43 143	-81.3770667 -81.3706637	41.2298490 41.2132491	3 2	Y N	N Y	11.200 13.348	17 129	41.6 49.5	2.5 11.2	96.5 49.5		\$1,202,050 \$4,513,472	96 35	69.8 71.2	46 47
22 114	-81.3333605 -81.3842402	41.2266873 41.2472731	3 3	Y Y	N N	8.715 10.873	23 18	32.3 40.3	7.0 2.4	76.5 99.5		\$944,802 \$1,168,231	118 101	72.5 72.8	48 49
234 6	-81.3761493 -81.3731639	41.3426826 41.1999655	2 2	N N	N N	29.700 18.855	123 126	110.2 70.0	5.4 16.3	50 35.5		\$3,116,615 \$1,994,238	48 66	73.7 75.8	50 51
282 754	-81.3864898 -81.4139800	41.3036717 41.2956847	3	N Y	N Y	45.381 6.666	164 27	168.4 24.7	7.7 1.6	36 144.5		\$4,739,580 \$2,275,493	32 61	77.3 77.5	52 53
289 20	-81.3857062 -81.3372634	41.2875817 41.2269068	3	N Y	Y N	17.804 8.116	171 26	66.1 30.1	15.3 6.5	39.5 84		\$6,005,915 \$882,871	23 125	77.8 78.3	54 55
532 193	-81.4285267 -81.3856179	41.3634433 41.2990861	2 MOD	N N	N N	12.747 40.153	101 165	47.3 149.0	10.6 6.9	55.5 40.5		\$1,362,104 \$4,198,505	87 39	81.2 81.5	56 57
50 91	-81.3750482 -81.3746950	41.2256343 41.2746826	2	N N	N Y	15.724 15.079	127 175	58.3 55.9	13.4 12.8	45 46		\$1,670,229 \$5,093,050	77 29	83.0 83.3	58 59
237 583	-81.3829540 -81.4189259	41.3485766 41.3582853	2 MOD	N N	N N	15.753 22.543	100 168	58.4 83.6	3.3 19.9	79.5 32.5		\$1,673,274 \$2,375,993	75 58	84.8 86.2	60 61
137 201	-81.3862712 -81.3776971	41.2159973 41.3023146	2 2-3 GRAY	N N	N N	13.349 9.770	128 93	49.5 36.2	11.2 7.9	48.5 67.5		\$1,424,487 \$1,054,065	83 106	86.5 88.8	62 63
102 528	-81.3782254 -81.4298977	41.2787372 41.3695219	2 MOD	N N	Y N	12.874 10.038	180 102	47.8 37.2	10.7 8.2	53.5 65.5		\$4,354,768 \$1,081,723	37 104	90.2 90.5	64 65
550 80	-81.4760353 -81.3768777	41.4211004 41.2407895	2 MOD	N N	N N	9.807 17.915	103 170	36.4 66.5	8.0 15.4	66.5 38.5		\$1,057,869 \$1,896,983	105 70	91.5 92.8	66 67
608 803	-81.4118710 -81.3975388	41.3399460 41.2917066	1-2 GRAY	N N	N Y	12.990 14.416	146 177	48.2 53.5	10.8 3.0	51.5 84		\$1,387,236 \$4,870,963	84 31	93.8 97.3	68 69
617 44	-81.4092651 -81.3792275	41.3226843 41.2339821		N N	Y N	10.268 20.640	189 169	38.1 76.6	8.4 4.1	63.5 64		\$3,481,954 \$2,178,967	43 63	98.5 98.7	70 71
152 971	-81.3646464 -81.4568289	41.2152175 41.3468215	3	N N	Y N	10.047 8.002	190 88	37.3 29.7	8.2 6.4	64.5 85.5		\$3,407,774 \$871,046	45 128	99.8 100.5	72 73
622 959	-81.3994968 -81.6082353	41.3264207 41.3698762		N N	Y Y	9.558 12.599	192 182	35.5 46.7	7.7 2.7	70.5 91		\$3,244,075 \$4,262,671	47 38	103.2 103.7	74 75
156 604	-81.3744927 -81.3955471	41.2189230 41.3387117		N N	N N	12.894 17.587	179 172	47.8 65.2	10.7 3.6	52.5 73.5		\$1,377,310 \$1,863,004	85 71	105.5 105.5	76 77
163 11	-81.3573440 -81.3804311	41.2186395 41.1970831	2	N N	N N	9.174 16.462	132 173	34.0 61.1	7.4 3.4	73 75		\$992,371 \$1,746,577	114 73	106.3 107.0	78 79
150 821	-81.3642643 -81.3928986	41.2127952 41.2681902	3	Y N	Y N	3.934 12.834	29 181	14.6 47.6	1.1 10.7	204.5 54.5		\$1,360,403 \$1,371,164	88 86	107.2 107.2	80 81
582 837	-81.4318995 -81.3940052	41.3549602 41.2598226	3	N N	N N	16.398 8.665	174 87	60.8 32.1	3.4 2.0	76 121		\$1,740,002 \$939,650	74 119	108.0 109.0	82 83
153 747	-81.3589526 -81.4275050	41.2145028 41.3005943		N N	N N	12.486 12.243	183 184	46.3 45.4	10.4 10.2	57 58		\$1,335,114 \$1,309,934	90 92	110.0 111.3	84 85
35 40	-81.3656170 -81.3793594	41.2293586 41.2365811	3	N Y	N Y	14.633 3.606	176 31	54.3 13.4	3.1 1.0	82.5 217.5		\$1,557,325 \$1,250,563	79 95	112.5 114.5	86 87
280 121	-81.3896401 -81.3906933	41.3061584 41.2494386	2	N N	N N	13.525 9.514	178 130	50.2 35.3	2.9 2.2	85.5 110		\$1,442,660 \$1,027,497	82 109	115.2 116.3	88 89
149 13	-81.3703798 -81.3559566	41.2152646 41.1906602	3	N Y	N N	10.708 5.694	187 28	39.7 21.1	8.8 1.4	61 160.5		\$1,151,152 \$632,227	102 163	116.7 117.2	90 91
576 560	-81.4581397 -81.5176469	41.3639385 41.3802756	2 3	N Y	N Y	9.347 3.395	131 32	34.7 12.6	2.1 1.0	112.5 228.5		\$1,010,284 \$1,180,048	111 98	118.2 119.5	92 93
562 76	-81.5040456 -81.3742679	41.3838762 41.2485939	3	Y N	Y N	3.395 9.584	33 191	12.6 35.6	1.0 7.8	229.5 69.5		\$1,179,953 \$1,034,816	99 108	120.5 122.8	94 95
291 628	-81.3864857 -81.3944168	41.2891485 41.3207753		N N	Y Y	6.686 8.440	213 196	24.8 31.3	5.2 2.0	97 123		\$2,282,230 \$2,869,599	60 52	123.3 123.7	96 97
812 545	-81.3992778 -81.4917561	41.2803483 41.4443760		N N	N N	11.770 11.015	185 186	43.7 40.9	2.6 2.5	94.5 98.5		\$1,261,016 \$1,182,847	94 97	124.5 127.2	98 99
663 112	-81.4429453 -81.3896970	41.3275509 41.2569055	2 MOD	N N	N N	6.702 10.375	104 188	24.9 38.5	1.6 2.3	143 102.5		\$736,484 \$1,116,614	143 103	130.0 131.2	100 101
776 612	-81.4142020 -81.4043742	41.3021508 41.3303277		N N	N Y	8.584 7.242	195 204	31.8 26.9	6.9 1.7	78.5 134.5		\$931,273 \$2,468,400	121 57	131.5 131.8	102 103
561 849	-81.5057135 -81.3951497	41.3827929 41.2548614	3	Y N	Y N	2.374 8.332	36 197	8.8 30.9	1.7 6.7	230 81		\$838,062 \$905,187	134 122	133.3 133.3	104 105
630 575	-81.3982518 -81.4526782	41.3190948 41.3511191	2	N N	Y N	4.555 5.928	137 134	16.9 22.0	1.2 4.6	186 109.5		\$1,568,493 \$656,398	78 160	133.7 134.5	106 107
834 637	-81.3935456 -81.3945282	41.2640011 41.3173531		N N	N Y	8.120 6.717	198 212	30.1 24.9	6.5 1.6	83 141.5		\$883,215 \$2,292,628	124 59	135.0 137.5	108 109
312 32	-81.5082393 -81.3597601	41.3841128 41.2325987	3	Y N	Y N	2.866 7.766	34 202	10.6 28.8	0.8 6.2	270 87.5		\$1,002,872 \$846,672	113 132	139.0 140.5	110 111
816 641	-81.3987610 -81.3978032	41.2836593 41.3117803		N N	N Y	9.065 6.458	193 216	33.6 24.0	2.1 1.6	116 147.5		\$981,031 \$2,205,889	115 62	141.3 141.8	112 113
692	-81.4553950	41.3359551	3	N N	N N	5.357 7.184	89 205	19.9 26.7	1.4 5.7	168.5 89.5		\$597,305 \$786,370	170 135	142.5 143.2	114 115

WETLAND ID	Centroid Longitude	Centroid Latitude	ORAM Category	T&E Species?	Managed Area?	Area in Acres	Ecological Rank	AVGWLF Total Volume Processed	Basin Volume (ac- ft)	Hydro Rank (Average)		Economic Value	Economic Rank		Average Rank	Final Rank
584 99	-81.4111140 -81.3782102	41.3592721 41.2772445		N N	N Y	8.726 6.309	194 218	32.4 23.4	2.0 1.6	119.5 149.5		\$946,028 \$2,155,831	117 64		143.5 143.8	116 117
139 246	-81.3860633 -81.3791101	41.2091441 41.3336417	2	N N	N N	7.132 6.285	206 133	26.5 23.3	5.6 1.6	90.5 152.5		\$780,980 \$693,391	136 151		144.2 145.5	118 119
737 83	-81.4121084 -81.3816376	41.2810810 41.2408249		N N	N N	6.879 6.876	209 210	25.5 25.5	5.4 5.4	93 94		\$754,804 \$754,565	139 140		147.0 148.0	120 121
651 64	-81.4097033 -81.3648393	41.3110392 41.2407394		N N	Y N	6.008 6.851	225 211	22.3 25.4	1.5 5.4	156 95	_	\$2,054,969 \$751,946	65 141		148.7 149.0	122 123
34 23	-81.3691239 -81.3349037	41.2314537 41.2239048	3	N Y	N N	8.042 3.907	199 30	29.8 14.5	1.9 1.1	127 206.5		\$875,145 \$447,247	127 217		151.0 151.2	124 125
277 910	-81.3872851 -81.4022981	41.3149958 41.2286978	2	N N	N N	7.935 5.663	200 135	29.4 21.0	1.9 1.4	128.5 161.5		\$864,154 \$628,998	129 164		152.5 153.5	126 127
515 161	-81.4656672 -81.3580615	41.3621731 41.2217136	1-2 GRAY 2 MOD	N N	N N	4.865 5.146	147 105	18.0 19.1	3.7 1.3	125 174.5		\$546,389 \$575,476	189 182		153.7 153.8	128 129
952 261	-81.6061584 -81.3755560	41.3644802 41.3406121		N N	Y N	5.627 7.804	230 201	20.9 29.0	1.4 1.9	163.5 130	_	\$1,927,568 \$850,609	68 131		153.8 154.0	130 131
63 141	-81.3683272 -81.3856396	41.2407928 41.2071404		N N	N N	7.708 6.307	203 219	28.6 23.4	1.8 4.9	131.5 101.5		\$840,603 \$695,640	133 148		155.8 156.2	132 133
259 529	-81.3743495 -81.4286374	41.3208246 41.3690608		N N	N N	6.288 6.287	220 221	23.3 23.3	4.9 4.9	102.5 103.5		\$693,669 \$693,586	149 150		157.2 158.2	134 135
565 425	-81.5006857 -81.4048532	41.3633873 41.3582540		N N	N N	6.284 7.097	222 207	23.3 26.3	4.9 1.7	105 137		\$693,212 \$777,399	152 137		159.7 160.3	136 137
178 600	-81.3681278 -81.3960574	41.2795625 41.3436910		N N	Y N	4.182 6.916	260 208	15.5 25.7	3.1 1.7	141.5 138		\$1,443,475 \$758,697	81 138		160.8 161.3	138 139
840 204	-81.3937601 -81.3774298	41.2524352 41.3090002		N N	N N	6.078 6.014	223 224	22.5	4.7 4.6	106 107		\$671,889 \$665,296	155 156		161.3 162.3	140 141
614 146	-81.4032320 -81.3694005	41.3273891 41.2087489		N N	Y	5.129 4.864	242	19.0 18.0	1.3 1.3	175.5 179		\$1,760,688 \$1,671,925	72 76		163.2 166.3	142 143
491 218	-81.5127978 -81.3586209	41.3966979 41.3007716	2 MOD	N N	N N	5.850 4.335	228 106	21.7	4.5	110.5 192.5		\$648,359 \$491,516	161 204		166.5 167.5	144 145
806 197	-81.4057549 -81.3814754	41.2935989 41.3048551		N N N	N N N	6.581 6.514	214	24.4	1.2 1.6 1.6	192.5 145.5 146.5		\$724,016 \$717,057	144 145		167.5 167.8 168.8	145 146 147
197 12 236	-81.3630038 -81.3815975	41.3048551 41.1918465 41.3410476	2	N N N	N N N	4.743 6.410	136 217	17.6 23.8	1.0 1.2 1.6	146.5 183.5 148.5		\$717,057 \$533,799 \$706,331	145 193 147		170.8 170.8	147 148 149
236 115 318	-81.3815975 -81.3872195 -81.5017400	41.3410476 41.2478112 41.3835908	3	N N Y	N N Y	5.377 1.627	217 233 39	23.8 19.9 6.0	4.1 1.1	148.5 114.5 303	╡	\$706,331 \$599,371 \$587,905	147 168 176		170.8 171.8 172.7	149 150 151
31	-81.5017400 -81.3503214 -81.3965870	41.2349573	3	Y N N	N	1.627 5.320 5.310	39 236 237	6.0 19.7 19.7	4.1	303 117.5 118.5	╡	\$593,508	176 173 174		172.7 175.5 176.5	152
845 460	-81.5767959	41.2580983 41.3793323 41.2771227	3	Y	N Y Y	2.011	38	7.5	4.1 0.6	349.5	╡	\$592,483 \$716,373 \$1,470,300	146		177.8	153 154
100 370 45	-81.3810742 -81.5337466	41.2771237 41.3755134 41.2285526		N N N	Y N N	4.262 5.213 5.974	259 239 226	15.8 19.3 22.2	1.1 4.0 1.5	195.5 120.5 157	╡	\$1,470,300 \$582,419 \$661,207	80 179 158		178.2 179.5 180.3	155 156
966	-81.3809652 -81.4459878	41.2385536 41.3066417		N	N	5.205	240	19.3	4.0	121.5		\$661,207 \$581,598	180		180.5	157 158
203 254	-81.3852691 -81.3727169	41.3062398 41.3244085		N N	N N	5.971 5.185	227 241	22.2 19.2	1.5 3.9	158 122.5		\$660,809 \$579,535	159 181		181.3 181.5	159 160
94 319	-81.3774228 -81.4981992	41.2692963 41.3813971	3	N Y	Y Y	3.370 1.528	285 41	12.5 5.7	2.5 1.0	165.5 323.5		\$1,171,659 \$554,562	100 187		183.5 183.8	161 162
912 745	-81.3959998 -81.4252197	41.2236648 41.2978671		N N	N N	5.634 4.835	229 245	20.9 17.9	1.4 3.7	162.5 126.5		\$625,983 \$543,330	165 190		185.5 187.2	163 164
509 937	-81.4864286 -81.5767969	41.3744834 41.3726482		N N	N Y	5.611 3.900	231 267	20.8 14.5	1.4 1.1	165 207.5		\$623,565 \$1,348,942	166 89		187.3 187.8	165 166
264 286	-81.3844275 -81.3900293	41.3409649 41.2997025		N N	N N	5.478 5.373	232 234	20.3 19.9	1.4 1.4	166 167.5		\$609,815 \$598,926	167 169		188.3 190.2	167 168
788 485	-81.3944007 -81.4848225	41.2899343 41.4107263		N N	Y N	3.787 4.550	269 249	14.1 16.9	1.0 3.4	211 131		\$1,311,325 \$513,775	91 195		190.3 191.7	169 170
798 790	-81.4022477 -81.3987529	41.2978864 41.2986019		N N	N Y	5.333 3.664	235 271	19.8 13.6	1.4 1.0	169.5 213.5		\$594,876 \$1,269,926	172 93		192.2 192.5	171 172
819 556	-81.3943807 -81.4976730	41.2735836 41.3981970		N N	N N	4.456 4.449	251 252	16.5 16.5	3.3 3.3	133.5 134.5		\$504,095 \$503,345	197 198		193.8 194.8	173 174
552 885	-81.4800153 -81.3927066	41.4066841 41.2515969		N N	N N	5.234 4.418	238 253	19.4 16.4	1.3 3.3	171.5 135.5		\$584,593 \$500,161	178 200		195.8 196.2	175 176
734 1015	-81.4185391 -81.3598407	41.2791133 41.2445786		N N	N N	4.398 4.378	255 256	16.3 16.2	3.3 3.3	137 138		\$498,083 \$495,986	202 203		198.0 199.0	177 178
844 294	-81.4411438 -81.3702595	41.2624411 41.2773060	2	N N	N Y	3.435 3.007	138 310	12.7 11.2	1.0 2.2	226 186		\$398,377 \$1,049,861	237 107		200.3 201.0	179 180
154 381	-81.3625715 -81.4902027	41.2210499 41.3764515	3	N Y	N Y	5.020 1.301	243 43	18.6 4.8	1.3 0.9	176.5 360		\$562,444 \$478,526	184 207		201.2 203.3	181 182
566 77	-81.4972502 -81.3688371	41.3625152 41.2503524	1	N N	N N	4.095 3.452	261 155	15.2 12.8	3.0 1.0	143 224		\$466,713 \$400,159	208 235		204.0 204.7	183 184
940 173	-81.5723197 -81.3371435	41.3679041 41.2239574	2 MOD 3	N Y	Y N	1.552 2.727	112 35	5.8 10.1	1.0 0.8	319.5 281	_	\$562,643 \$325,142	183 300		204.8 205.3	185 186
895 800	-81.3986002 -81.4027154	41.2335346 41.2947771		N N	N N	4.765 4.036	246 263	17.7 15.0	1.2 3.0	181.5 145	_	\$535,994 \$460,626	191 211		206.2 206.3	187 188
<u>8</u> 526	-81.3654391 -81.4798371	41.1963100 41.3712764		N N	N N	4.745 4.573	247 248	17.6 17.0	1.2 1.2	182.5 185	_	\$533,956 \$516,129	192 194		207.2 209.0	189 190
<u>192</u> 531	-81.3824348 -81.4360130	41.2978422 41.3658513	2 MOD	N N	N N	4.489 3.010	250 107	16.7 11.2	1.2 0.9	188 256.5		\$507,455 \$354,394	196 271		211.3 211.5	191 192
546 499	-81.4924950 -81.4557579	41.4524981 41.3864321	1-2 GRAY	N N	N N	3.851 3.192	268 148	14.3 11.8	2.8 0.9	149.5 238.5		\$441,496 \$373,199	218 250		211.8 212.2	193 194
842 269	-81.4065096 -81.3888538	41.2485417 41.3212990	2 MOD	N N	N N	2.580 4.411	109 254	9.6 16.4	1.8 1.2	216 190.5		\$309,873 \$499,456	313 201		212.7 215.2	195 196
175 227	-81.3410606 -81.3568535	41.2185972 41.3195849		N N	N N	3.656 3.643	273 274	13.6 13.5	2.7 2.7	153 154	7	\$421,286 \$419,964	222 223	Г	216.0 217.0	197 198
379 235	-81.4952543 -81.3796096	41.3781714 41.3400353	3	Y N	Y N	1.532 4.301	40 257	5.7	0.5	425.5 193.5	4	\$555,946 \$488,003	186 205	P	217.2 218.5	199 200
281 62	-81.3842561 -81.3669244	41.3075009 41.2418724		N N	N N	4.295 3.539	258 278	15.9 13.1	1.1 2.6	194.5 157		\$487,436 \$409,200	206 228	P	219.5 221.0	201 202
165 571	-81.3606202 -81.4866574	41.2042192 41.3698852		N N	N N	4.072 3.494	262 281	15.1 13.0	1.1 2.6	200.5 159.5		\$464,328 \$404,480	210 233	P	224.2 224.5	203 204
603 47	-81.3921587 -81.3800280	41.3381523 41.2300445	1	N N	N N	4.020 3.011	264 156	14.9 11.2	1.1 0.9	202 255		\$458,979 \$354,503	212 269	H	226.0 226.7	205 206
964 467	-81.4767670 -81.4960594	41.3099464 41.4506942	2 MOD	N N	N N	4.008	265 108	14.9	1.1 0.8	203.5 278		\$457,742 \$327,235	213 297	H	227.2 227.7	207 208
567 483	-81.4944128 -81.4786859	41.3509670 41.4042981		N N	N N	3.402 3.934	283 266	12.6 14.6	2.5 1.1	162 205.5		\$395,018 \$450,000	239 216	H	228.0 229.2	200 209 210
1004 848	-81.5312843 -81.3982942	41.3604909 41.2563237		N N	N N	3.401 3.314	284 287	12.6	2.5	163.5 168		\$394,856 \$385,859	240 242		229.2 232.3	210 211 212
382 794	-81.4893882 -81.3979621	41.3762771 41.2971980	3	Y N	Y Y	1.068 2.913	45	4.0	0.7	419.5		\$400,650 \$1,018,562	234 110		232.8 233.2	212 213 214
110 70	-81.3891073 -81.3619043	41.2596155 41.2443047		N N	N N	3.727 3.272	270	13.8 12.1	1.0 2.4	212.5 169.5		\$428,577 \$381,551	220 245		234.2 234.5	214 215 216
653 130	-81.4112679 -81.3857853	41.3131455 41.2230827	2	N N	Y N	2.868	324 139	10.6	0.8	269 274		\$1,003,511 \$331,194	112 294		235.0 235.7	210 217 218
598 574	-81.4011931 -81.4762469	41.3436628 41.3658851		N N N	N N N	3.657 3.245	272	13.6 12.0	1.0 2.4	214 214.5 171		\$331,194 \$421,345 \$378,750	294 221 247		235.7 235.8 236.3	218 219 220
574 51 949	-81.3735990 -81.5475106	41.3658851 41.2245875 41.3878089	3	N N Y	N N Y	3.245 3.637 1.260	291 275 44	12.0 13.5 4.7	2.4 1.0 0.4	216.5 466		\$378,750 \$419,322 \$465,011	247 224 209		238.5 239.7	220 221 222
949 970 67	-81.4199189 -81.3620532	41.3378089 41.3352149 41.2417052	5	N N	N N	3.588 3.565	276 277	4.7 13.3 13.2	1.0 1.0	219 220	╡	\$405,011 \$414,195 \$411,866	209 225 227		239.7 240.0 241.3	222 223 224
211 176	-81.3620532 -81.3790035 -81.3705223	41.2417052 41.3109341 41.2806812		N N N	N N Y	3.565 3.136 2.746	277 296 330	13.2 11.6 10.2	2.3 0.8	175 279	╡	\$411,800 \$367,449 \$962,682	253 116		241.3 241.3 241.7	224 225 226
176 753 673	-81.3705223 -81.4157956 -81.4345544	41.2983054	3	N Y N	Y N N	2.746 2.188 3.522	330 37 279	10.2 8.1 13.1	0.8 0.7 1.0	279 333 221.5	╡	\$269,308	355		241.7 241.7 243.2	226 227 228
162	-81.3616172	41.3171867 41.2227739 41.2871426		N	N	3.495	280	13.0	1.0	222.5	╡	\$407,369 \$404,567 \$264,577	229 232		244.8	229
805	-81.3960831	41.2871426		N	N	3.079	302	11.4	2.2	178.5		\$361,577	260		246.8	230

WETLAND ID	Centroid Longitude	Centroid Latitude	ORAM Category	T&E Species?	Managed Area?	Area in Acres	Ecological Rank	AVGWLF Total Volume Processed	Basin Volume (ac- ft)	Hydro Rank (Average)		Economic Value	Economic Rank		Average Rank	Final Rank
627 268	-81.3916806 -81.3890394	41.3235843 41.3377213		N N	Y N	2.673 3.448	336 282	9.9 12.8	0.8	286.5 225		\$938,094 \$399,730	120 236		247.5 247.7	231 232
490 749	-81.5119742 -81.4222278	41.3933967 41.2984459		N N	N N	3.046 3.323	306 286	11.3 12.3	2.2 0.9	181 231.5		\$358,154 \$386,785	265 241		250.7 252.8	233 234
973 17	-81.4088609 -81.3603551	41.2602041 41.1825799	2	N N	N N	3.025 2.521	308 140	11.2 9.4	2.2 0.7	182.5 301		\$355,940 \$303,850	268 321		252.8 254.0	235 236
97 475	-81.3502787 -81.5023299	41.2808017 41.4272140		N N	N N	3.010 3.296	309 288	11.2 12.2	2.2 0.9	184.5 233		\$354,440 \$383,991	270 243		254.5 254.7	237 238
551 199	-81.4715809 -81.3802792	41.4150495 41.3022051		N N	Y N	2.573 3.254	346 290	9.5 12.1	0.8 0.9	296 235		\$904,697 \$379,615	123 246		255.0 257.0	239 240
993 416	-81.4099531 -81.4543932	41.3457980 41.3526406		N N	N N	2.985 3.240	312 292	11.1 12.0	2.2 0.9	187.5 236.5		\$351,780 \$378,237	273 248		257.5 258.8	241 242
982 642	-81.3943128 -81.3937608	41.2187176 41.3123310		N N	N Y	3.210 2.491	293 352	11.9 9.2	0.9 0.7	237.5 302.5		\$375,130 \$877,125	249 126		259.8 260.2	243 244
151 399	-81.3657813 -81.4723696	41.2197299 41.3563808		N N	N N	3.184 2.936	294 316	11.8 10.9	0.9 2.1	239.5 190.5		\$372,454 \$346,739	251 279		261.5 261.8	245 246
577 514	-81.4559445 -81.4734837	41.3646223 41.3575314		N N	N N	3.181 2.931	295 317	11.8 10.9	0.9 2.1	241 191.5		\$372,078 \$346,202	252 280		262.7 262.8	247 248
65 488	-81.3654360 -81.5178352	41.2441549 41.3838894	3	N Y	N Y	2.925 0.913	318 46	10.9 3.4	2.1 0.6	192.5 469.5		\$345,662 \$348,675	281 278		263.8 264.5	249 250
1012 804	-81.3575113 -81.3956332	41.2422105 41.2866165		N N	N N	3.136 2.925	297 319 298	11.6 10.9 11.6	0.9	243 193.5 244.5		\$367,432 \$345,640	254 282		264.7 264.8	251 252
432 618	-81.3967843 -81.4127828	41.3505212 41.3207893		N N	N Y	3.124 2.419	360	9.0	0.9 0.7 0.9	311		\$366,177 \$852,910	256 130		266.2 267.0	253 254
504 283 889	-81.5358517 -81.3904621 -81.4319740	41.3683731 41.3010799 41.2636699		N N N	N N N	3.104 3.101 2.881	299 300 323	11.5 11.5 10.7	0.9	245.5 246.5 197		\$364,130 \$363,852 \$241,065	257 258 287		267.2 268.2 269.0	255 256 257
87	-81.3496920	41.2462122		Ν	N	3.095	301	11.5	0.9	247.5		\$341,065 \$363,238 \$260,801	259		269.2	258
534 743 733	-81.4070365 -81.4207238 -81.4215539	41.3622497 41.2945446 41.2787090		N N N	N N N	3.073 3.071 2.816	303 304 326	11.4 11.4 10.4	0.9 0.9 2.0	249.5 250.5 201		\$360,891 \$360,734 \$334,318	261 262 292		271.2 272.2 273.0	259 260 261
733 111 917	-81.4215539 -81.3897119 -81.5666809	41.2787090 41.2577111 41.3599712	2	N N Y	N N Y	3.058	326 305 47	11.3	0.9	201 251.5 488.5		\$334,318 \$359,381 \$334,452	263		273.2	261 262 263
900	-81.5666809 -81.4030772 -81.4014354	41.3599712 41.2270641 41.3463957	3	N	N	0.871 3.045 2.998	307	3.2 11.3	0.6	253		\$334,452 \$358,065 \$353,126	291 267 272		275.5 275.7 280.5	264
984 471 880	-81.4014354 -81.4908436 -81.4332509	41.3463957 41.4293512 41.2639474	2 MOD	N N	N N	2.998 1.957 2.700	311 110 334	11.1 7.3	0.9	258.5 356 207.5		\$353,126 \$245,416 \$322,334	272 377 303		280.5 281.0 281.5	265 266 267
880 160 500	-81.4332509 -81.3792552 81.3082216	41.2639474 41.2238008 41.2442056		N N	N N	2.700 2.976	334 313 214	10.0 11.0	1.9 0.9	207.5 260		\$322,334 \$350,854 \$250,682	303 274 275		281.5 282.3	267 268
599 797	-81.3982216 -81.4016696	41.3443956 41.2967165		N N	N N	2.974 2.964	314 315	11.0 11.0	0.9	261 262		\$350,683 \$349,652	275 277	╞╋	283.3 284.7	269 270
400 297	-81.4726404 -81.3910890	41.3613104 41.3489009	1-2 GRAY	N N	N N	2.635 2.056	338 149	9.8 7.6	1.9 0.6	211 344		\$315,554 \$255,672	307 365	╞╋	285.3 286.0	271 272
127 679	-81.3840573 -81.4516956	41.2295847 41.3308460	1	N N	N N	2.088 2.924	157 320	7.7 10.8	0.6 0.8	341.5 265		\$259,036 \$345,466	363 283		287.2 289.3	273 274
461 131	-81.5201634 -81.3875764	41.4434216 41.2212261		N N	N N	2.586 2.915	343 321	9.6 10.8	1.8 0.8	215 266		\$310,525 \$344,580	312 284		290.0 290.3	275 276
631 741	-81.4016060 -81.4195799	41.3184916 41.2913907		N N	Y N	2.093 2.851	389 325	7.8 10.6	0.6 0.8	340.5 271		\$743,914 \$337,952	142 288		290.5 294.7	277 278
968 182	-81.4229081 -81.3548575	41.2781648 41.2839268		N N	N N	2.538 2.790	348 327	9.4 10.3	1.8 0.8	219 273		\$305,549 \$331,616	318 293		295.0 297.7	279 280
542 607	-81.5216028 -81.3981768	41.3649566 41.3419041		N N	N N	2.519 2.771	351 328	9.3 10.3	1.8 0.8	221.5 275.5		\$303,561 \$329,677	322 295		298.2 299.5	281 282
54 181	-81.3602395 -81.3596499	41.2272305 41.2799897		N N	N N	2.759 2.466	329 355	10.2 9.2	0.8 1.7	277 224.5		\$328,434 \$298,144	296 325		300.7 301.5	283 284
132 252	-81.3910254 -81.3633104	41.2138090 41.3241743	1-2 GRAY 3	N N	N N	1.843 1.355	150 90	6.8 5.0	0.6 0.9	369.5 348.5		\$233,669 \$183,107	388 469		302.5 302.5	285 286
799 84	-81.4024714 -81.3785399	41.2954968 41.2505029		N N	N N	2.743 2.712	331 332	10.2 10.1	0.8 0.8	280 282.5		\$326,798 \$323,539	298 301		303.0 305.2	287 288
643 27	-81.3992066 -81.3517152	41.3102510 41.2294792		N N	Y N	1.927 2.708	404 333	7.2 10.0	0.6 0.8	360 284		\$688,425 \$323,181	153 302		305.7 306.3	289 290
412 49	-81.4559625 -81.3764761	41.3757806 41.2273758	3	Y N	N N	1.501 2.384	42 361	5.6 8.8	0.5 1.7	430.5 229		\$198,232 \$289,629	447 332		306.5 307.3	291 292
613 841	-81.4047808 -81.3925106	41.3320308 41.2502423		N N	Y N	1.917 2.675	406 335	7.1 9.9	0.6 0.8	362 285.5		\$685,075 \$319,724	154 304		307.3 308.2	293 294
431 967	-81.3946777 -81.4280732	41.3495722 41.2961338		N N	N N	2.669 2.611	337 339	9.9 9.7	0.8 0.8	287.5 289		\$319,097 \$313,114	305 308		309.8 312.0	295 296
572 647	-81.4775442 -81.3989863	41.3653993 41.3047680		N N	N Y	2.339 1.847	366 412	8.7 6.9	1.6 0.6	233.5 368.5		\$284,964 \$661,530	337 157		312.2 312.5	297 298
19 974	-81.3611997 -81.4375770	41.1884264 41.2636553		N N	N N	2.597 2.596	340 341	9.6 9.6	0.8 0.8	290 291		\$311,689 \$311,529	309 310		313.0 314.0	299 300
46 559	-81.3813792 -81.4904725	41.2378579 41.3881003		N N	N N	2.593 2.577	342 344	9.6 9.6	0.8 0.8	292 294		\$311,229 \$309,560	311 314		315.0 317.3	301 302
735 569	-81.4127199 -81.4910863	41.2817453 41.3636862		N N	N N	2.574 2.562	345 347	9.6 9.5	0.8 0.8	295 297		\$309,328 \$308,015	315 316		318.3 320.0	303 304
580 979	-81.4781956 -81.3984019	41.3836336 41.2269390	2 MOD	N N	Y N	1.796 1.568	421 111	6.7 5.8	0.6 0.5	377.5 417.5		\$644,504 \$205,133	162 437		320.2 321.8	305 306
866 503	-81.3987721 -81.5358337	41.2433489 41.3652066		N N	N N	2.526 2.230	349 377	9.4 8.3	0.7 1.6	299 243		\$304,371 \$273,660	319 349		322.3 323.0	307 308
262 487	-81.3771698 -81.5167315	41.3404389 41.3847228	3	N Y	N Y	2.525 0.681	350 49	9.4 2.5	0.7 0.4	300 570.5		\$304,182 \$270,922	320 352		323.3 323.8	309 310
725 172	-81.4542941 -81.3472968	41.2853138 41.2106017	2 MOD	N N	N N	1.550 2.487	113 353	5.7 9.2	0.5 0.7	422.5 303.5	_	\$203,269 \$300,260	443 323		326.2 326.5	311 312
415 295	-81.4541385 -81.3907408	41.3583566 41.3541802		N N	N N	2.198 2.474	381 354	8.2 9.2	1.5 0.7	246 304.5	_	\$270,401 \$298,930	354 324		327.0 327.5	313 314
59 486	-81.3425256 -81.5337170	41.2562870 41.4039404	2	N N	N N	1.600 2.168	141 382	5.9 8.0	0.5 1.5	412 247.5		\$208,481 \$267,292	432 356		328.3 328.5	315 316
610 401	-81.4077629 -81.4687693	41.3366717 41.3594168		N N	N N	2.461 2.425	356 357	9.1 9.0	0.7	306 307.5	_	\$297,559 \$293,892	326 328		329.3 330.8	317 318
909 585	-81.4049091 -81.4157038	41.2269176 41.3667184		N N	N N	2.424 2.419	358 359	9.0 9.0	0.7 0.7	308.5 310	_	\$293,761 \$293,228	329 330		331.8 333.0	319 320
746 923	-81.4238458 -81.5581235	41.2993075 41.3728452	3	N Y	N Y	2.107 0.750	387 48	7.8 2.8	1.5 0.3	252 625.5	_	\$260,938 \$294,174	361 327		333.3 333.5	321 322
329 606	-81.4771332 -81.3967696	41.3862211 41.3413783		N N	Y N	1.654 2.363	439 362	6.1 8.8	0.5	397 313		\$596,922 \$287,407	171 333		335.7 336.0	323 324
677 191	-81.4493531 -81.3814975	41.3279319 41.2965134		N N	N N	2.357 2.355	363 364	8.7 8.7	0.7 0.7	314 315	_	\$286,879 \$286,651	334 335		337.0 338.0	325 326
517 28	-81.4638272 -81.3424258	41.3640165 41.2277601		N N	N N	2.053 2.340	391 365	7.6 8.7	1.4 0.7	257.5 316		\$255,358 \$285,097	366 336		338.2 339.0	327 328
615 773	-81.4054618 -81.4248245	41.3222971 41.3056750		N N	Y N	1.639 2.337	443 367	6.1 8.7	0.5 0.7	401 317.5		\$591,714 \$284,759	175 338		339.7 340.8	329 330
136 573	-81.3883816 -81.4746227	41.2175089 41.3683772		N N	N N	2.334 2.331	368 369	8.7 8.6	0.7 0.7	318.5 319.5		\$284,418 \$284,128	339 340		341.8 342.8	331 332
25 636	-81.3464746 -81.3928388	41.2259982 41.3181530		N N	N Y	2.316 1.619	370 450	8.6 6.0	0.7 0.5	320.5 408		\$282,568 \$584,963	341 177		343.8 345.0	333 334
762 367	-81.4302955 -81.5825356	41.3019841 41.3629623		N N	N N	2.271 2.267	371 372	8.4 8.4	0.7 0.7	322 323		\$277,915 \$277,476	342 343		345.0 346.0	335 336
489 670	-81.5141554 -81.4393061	41.3836927 41.3177373	3	Y N	Y N	0.596 2.260	50 373	2.2 8.4	0.4 0.7	608 324		\$242,457 \$276,767	381 344		346.3 347.0	337 338
605 244	-81.3980543 -81.3761601	41.3396330 41.3324471		N N	N N	2.251 2.242	374 375	8.4 8.3	0.7 0.7	325 326		\$275,909 \$274,971	346 347		348.3 349.3	339 340
79 832	-81.3700441 -81.3980256	41.2499288 41.3484607	1	N N	N N	1.442 2.241	158 376	5.3 8.3	0.5 0.7	437.5 327		\$192,103 \$274,790	454 348		349.8 350.3	341 342
427 423	-81.4048804 -81.4105221	41.3517493 41.3618327		N N	N N	1.926 2.209	405 378	7.1 8.2	1.3 0.7	269 329		\$242,176 \$271,533	382 350		352.0 352.3	343 344
7	-81.3684803	41.1972022		Ν	N	2.204	379	8.2	0.7	330		\$270,982	351		353.3	345

WETLAND ID	Centroid Longitude	Centroid Latitude	ORAM Category	T&E Species?	Managed Area?	Area in Acres	Ecological Rank	AVGWLF Total Volume Processed	Basin Volume (ac- ft)	Hydro Rank (Average)	Economic Value	Economic Rank	Average Rank	Final Rank
57 781	-81.3364404 -81.4044252	41.2535733 41.2995651		N N	N N	2.200 1.884	380 408	8.2 7.0	0.7	331 272.5	\$270,604 \$237,908	353 384	354.7 354.8	346 347
874 554	-81.4172831 -81.4696448	41.2613714 41.4116975		N N	N Y	1.878 1.536	410 464	7.0 5.7	1.3 0.5	274 424.5	\$237,265 \$557,326	386 185	356.7 357.8	348 349
420 913	-81.4247081 -81.3958109	41.3565106 41.2218285		N N	N N	2.146 2.145	383 384	8.0 8.0	0.7 0.7	335 336	\$265,041 \$264,930	357 358	358.3 359.3	350 351
405 535	-81.4788358 -81.4073976	41.3667394 41.3562258		N N	N N	1.841 2.140	413 385	6.8 7.9	1.3 0.7	277 337	\$233,406 \$264,336	389 359	359.7 360.3	352 353
792 378	-81.3977064 -81.4971155	41.2962194 41.3673844		N N	Y N	1.516 1.827	466 414	5.6 6.8	0.5 1.3	428.5 278	\$550,593 \$231,976	188 391	360.8 361.0	354 355
587 66	-81.3935738 -81.3623821	41.3526224 41.2425867		N N	N N	2.131 2.102	386 388	7.9 7.8	0.7 0.6	338 339.5	\$263,390 \$260,392	360 362	361.3 363.2	356 357
310 578	-81.5305480 -81.4507461	41.3857416 41.3662421	3	Y N	Y N	0.538 2.066	51 390	2.0 7.7	0.3 0.6	640.5 343	\$223,072 \$256,759	403 364	364.8 365.7	358 359
786 58	-81.3929956 -81.3407972	41.2947742 41.2558893		N N	Y N	1.231 1.796	508 420	4.6 6.7	0.8 1.2	375.5 283	\$455,188 \$228,811	214 397	365.8 366.7	360 361
109 177	-81.3912221 -81.3660610	41.2613379 41.2827324	2	N N	N	1.246	142 510	4.6	0.4	470.5 379	\$171,876 \$452,497	489 215	367.2 368.0	362 363
779 69	-81.4078237 -81.3620868	41.3014443 41.2460535		N N	N N	2.043	392 393	7.6	0.6	345.5 346.5	\$254,303 \$253,677	367 369	368.2 369.5	364 365
189 398	-81.3817017 -81.4728423	41.2949296 41.3498407		N N	N N	2.036	394 424	7.6	0.6	347.5 286.5	\$253,636	370 401	370.5 370.5	366
676	-81.4360725	41.3090729		N	Ν	2.022	395	7.5	0.6	348.5	\$224,278 \$252,137	371	371.5	367 368
133 305	-81.3885681 -81.5359075	41.2140579 41.4023743	1-2 GRAY	N N	N N	1.985 1.033	396 151	7.4 3.8	0.6 0.7	351 429.5	\$248,286 \$149,847	372 541	373.0 373.8	369 370
95 981	-81.3411665 -81.3967652	41.2661004 41.2206720		N N	N N	1.971 1.967	397 398	7.3 7.3	0.6 0.6	352 353	\$246,858 \$246,487	373 374	374.0 375.0	371 372
644 780	-81.4002098 -81.4073280	41.3104986 41.2997408		N N	Y N	1.371 1.964	482 399	5.1 7.3	0.5 0.6	446.5 354	\$502,039 \$246,142	199 375	375.8 376.0	373 374
256 530	-81.3781073 -81.4358657	41.3240925 41.3672025		N N	N N	1.957 1.943	400 401	7.3 7.2	0.6 0.6	355 357	\$245,473 \$243,999	376 378	377.0 378.7	375 376
671 516	-81.4364914 -81.4662891	41.3168281 41.3629998		N N	N N	1.937 1.933	402 403	7.2 7.2	0.6 0.6	358 359	\$243,364 \$242,931	379 380	379.7 380.7	377 378
1001 233	-81.4594090 -81.3787075	41.3252650 41.3384522	MOD 2	N N	N N	1.671	434	6.2 4.3	1.1 0.4	295 489.5	\$215,873 \$163,503	414	381.0 381.2	379 380
470 200	-81.4898276 -81.3780418	41.3384322 41.4319039 41.3043421		N N N	N N N	1.660	437 407	6.2 7.0	1.1 0.6	297 364	\$103,503 \$214,681 \$238,758	417	383.7 384.7	380 381 382
316	-81.4910015	41.3914123		N	N	1.882	409	7.0	0.6	364 365.5 367	\$237,718	385	386.5	383
338 384	-81.4478454 -81.4894169	41.3900379 41.3748453	3	N Y	N Y	1.859 0.527	411 52	6.9 2.0	0.6 0.2	709.5	\$235,258 \$219,366	387 408	388.3 389.8	384 385
822 142	-81.3928168 -81.3826389	41.2705265 41.2059030		N N	N N	1.632 1.626	445 447	6.1 6.0	1.1 1.1	301.5 304	\$211,829 \$211,152	423 425	389.8 392.0	386 387
56 275	-81.3368835 -81.3912764	41.2580954 41.3193706	2 1	N N	N N	1.101 1.129	144 159	4.1 4.2	0.4	506 499	\$156,887 \$159,733	529 521	393.0 393.0	388 389
549 231	-81.4755974 -81.3695379	41.4346568 41.3385671		N N	N N	1.815 1.625	415 449	6.7 6.0	0.6	372 305.5	\$230,736 \$211,063	392 427	393.0 393.8	390 391
29 125	-81.3410832 -81.3900740	41.2289768 41.2319116		N N	N N	1.814 1.810	416 417	6.7 6.7	0.6 0.6	373 374	\$230,640 \$230,213	393 394	394.0 395.0	392 393
879 284	-81.4332937 -81.3914000	41.2631395 41.3021329		N N	N N	1.803	418	6.7 6.7	0.6	375	\$229,509 \$229,458	395 396	<u>396.0</u> 397.0	394 395
155	-81.3749365	41.2191955		N N	N N N	1.604	453	6.0	1.1	309	\$208,910	431	397.7	396
828 433	-81.4357251 -81.5203387	41.3201892 41.4090079	2 MOD	N	N	1.790 0.883	422 117	6.6 3.3	0.6 0.6	378.5 484	\$228,120 \$134,313	398 600	399.5 400.3	397 398
813 901	-81.3980403 -81.4040785	41.2839958 41.2280462		N N	N N	1.767 1.744	423 425	6.6 6.5	0.6 0.6	380.5 382	\$225,785 \$223,355	400 402	401.2 403.0	399 400
55 525	-81.3625264 -81.4817739	41.2238217 41.3726339		N N	N N	1.729 1.559	426 459	6.4 5.8	0.6 1.1	383.5 316	\$221,874 \$204,249	404 439	404.5 404.7	401 402
52 742	-81.3580558 -81.4222715	41.2267437 41.2939011	2	N N	N N	1.032 1.728	145 427	3.8 6.4	0.4	525 384.5	\$149,709 \$221,715	545 405	405.0 405.5	403 404
183 892	-81.3554715 -81.3979544	41.2755985 41.2174483		N N	N N	1.556 1.723	460 428	5.8 6.4	1.1 0.6	317 386	\$203,969 \$221,246	440 406	405.7 406.7	405 406
180 897	-81.3628854 -81.3962060	41.2834505 41.2294633		N N	N N	1.552 1.708	462 429	5.8 6.3	1.0 0.5	318.5 387	\$203,557 \$219,678	442 407	407.5 407.7	407 408
632 856	-81.4023420 -81.4015665	41.3194917 41.2520193	2 MOD	N N	Y N	1.188 0.946	520 114	4.4 3.5	0.4	485.5 543.5	\$440,747 \$140,774	219 568	408.2 408.5	409 410
241 548	-81.3772335 -81.4827962	41.3347373 41.4287949	2 MOD	N N	N N	1.692 0.942	430 115	6.3 3.5	0.5	388 545.5	\$218,033 \$140,389	409 569	409.0	411 412
602 53	-81.3926366 -81.3563672	41.3421588 41.2265450		N N	N	1.691	431 432	6.3 6.3	0.5	389 390	\$217,879 \$217,352	410 411	410.0	413
140	-81.3837864	41.2078405		N	N	1.674	433	6.2	0.5	391	\$216,192	413	412.3	415
765 898	-81.4321614 -81.3969036	41.3006763 41.2264390		N N	N N	1.668 1.664	435 436	6.2 6.2	0.5 0.5	392.5 394	\$215,481 \$215,160	415 416	414.2 415.3	416 417
363 462	-81.4872998 -81.5102978	41.4287325 41.4509290	1-2 GRAY	N N	N N	1.482 0.980	469 152	5.5 3.6	1.0 0.4	329 537	\$196,289 \$144,355	449 559	415.7 416.0	418 419
493 724	-81.4940660 -81.4548947	41.3877936 41.2854263	2 MOD	N N	N N	1.655 0.929	438 116	6.1 3.4	0.5 0.3	396 556	\$214,146 \$139,016	418 580	417.3 417.3	420 421
500 589	-81.4542915 -81.4027920	41.3858443 41.3484808		N N	N N	1.652 1.649	440 441	6.1 6.1	0.5 0.5	398 399	\$213,853 \$213,533	419 420	419.0 420.0	422 423
664 705	-81.4441848 -81.4576620	41.3253788 41.3441339		N N	N N	1.647 1.428	442 474	6.1 5.3	0.5 1.0	400 336	\$213,371 \$190,661	421 455	421.0 421.7	424 425
771 626	-81.4311825 -81.3933024	41.3051780 41.3267445		N N	N Y	1.635	444 539	6.1 4.1	0.5	402.5 505	\$212,158 \$412,111	422 226	422.8 423.3	426 427
407 96	-81.4803988 -81.3426715	41.3687991 41.2705538		N N	N N	1.409	476	5.2	0.9	338.5 404	\$188,740 \$211,712	457	423.8	428
648 86	-81.3994945 -81.3815345	41.3042797 41.2507064		N N	Y	0.967	571 540	3.6 4.0	0.6	449	\$366,671 \$406,900	255	425.0	430 431
119	-81.3867546	41.2514893		N N N	N	1.625	448	6.0	0.5	406	\$211,072	426	426.7	432
510 652	-81.4846211 -81.4123642	41.3725062 41.3129170		N	N Y	1.387 1.082	479 542	5.1 4.0	0.9	341.5 509	\$186,438 \$405,278	460 231	426.8 427.3	433 434
468 521	-81.4965236 -81.4621328	41.4479933 41.3669750		N N	N N	1.615 1.614	451 452	6.0 6.0	0.5	409 410	\$210,060 \$209,955	429 430	429.7 430.7	435 436
311 623	-81.5099385 -81.3950731	41.3807657 41.3264000	3	Y N	Y Y	0.439 1.054	53 547	1.6 3.9	0.2 0.4	751 515	\$171,745 \$395,942	490 238	431.3 433.3	437 438
120 523	-81.3884916 -81.4819853	41.2525285 41.3679629		N N	N N	1.583 1.578	454 455	5.9 5.9	0.5 0.5	413.5 414.5	\$206,716 \$206,172	433 434	433.5 434.5	439 440
<u>691</u> 179	-81.4554687 -81.3614987	41.3358610 41.2842523		N N	N N	1.573 1.350	456 487	5.8 5.0	0.5 0.9	415.5 350	\$205,704 \$182,636	435 470	435.5 435.7	441 442
650 240	-81.4030704 -81.3824166	41.3071545 41.3374364		N N	N N	1.568 1.336	457 488	5.8 5.0	0.5	416.5 351.5	\$205,186 \$181,203	436 471	436.5 436.8	443 444
333 479	-81.4573155 -81.4768587	41.4028912 41.4201311		N N	N N	1.561 1.324	458 490	5.8 4.9	0.5	418.5 355	\$204,402 \$179,966	438 473	438.2 439.3	445 446
346 931	-81.4764103 -81.5574744	41.4390609 41.3780870	3	N Y	N Y	1.555 0.418	461 54	5.8	0.5	420.5 766	\$203,834 \$164,671	441 508	440.8	447
972 629	-81.3950480 -81.3930028	41.2753622 41.3200357		N N	N Y	1.536 1.015	463	5.7	0.2	423.5	\$104,071 \$201,883 \$382,778	444	442.7 443.5 445.2	448 449 450
253	-81.3677793	41.3231682		N	N	1.297	495	4.8	0.9	362	\$177,107	479	445.3	451
78 307	-81.3711565 -81.5056115	41.2505803 41.4035057	1	N N	N N	0.884	160 465	3.3 5.7	0.3	577.5 426.5	\$134,396 \$201,074	599 445	445.5 445.5	452 453
419 255	-81.4288226 -81.3799756	41.3750112 41.3236625		N N	N N	1.504 1.498	467 468	5.6 5.6	0.5 0.5	429.5 431.5	\$198,580 \$197,908	446 448	447.5 449.2	454 455
147 558	-81.3616063 -81.4962055	41.2104888 41.3890514	3	Y N	Y N	0.400 1.269	55 500	1.5 4.7	0.2 0.8	772 368	\$158,635 \$174,277	524 484	450.3 450.7	456 457
345 801	-81.4965837 -81.4027033	41.4577254 41.2930294		N N	N N	1.460 1.454	470 471	5.4 5.4	0.5 0.5	433.5 434.5	\$193,945 \$193,425	450 451	451.2 452.2	458 459
170	-81.3480380	41.2077106		N	N	1.453	472	5.4	0.5	435.5	\$193,284	452	453.2	460

WETLAND ID	Centroid Longitude	Centroid Latitude	ORAM Category	T&E Species?	Managed Area?	Area in Acres	Ecological Rank	AVGWLF Total Volume Processed	Basin Volume (ac- ft)	Hydro Rank (Average)	Economic Valu	Economic e Rank	Average Rank	Final Rank
266 10 208	-81.3835329 -81.3728661 -81.3689831	41.3383554 41.1951603 41.3077139		N N N	N N N	1.444 1.418 1.393	473 475 477	5.4 5.3 5.2	0.5 0.5 0.5	436.5 439.5 441.5	\$192,299 \$189,647 \$187,039	453 456 458	454.2 456.8 458.8	461 462 463
200 2 222	-81.3637223 -81.3650686	41.2012329 41.3377522		N N N	N N N	1.393	478	5.1 4.5	0.5	443 377.5	\$187,039 \$186,444 \$169,702	459 495	438.8 460.0 460.5	464
60 320	-81.3435829 -81.4958779	41.2571673 41.3796700	2 MOD 3	N Y	N Y	0.756	118 57	2.8	0.3	620.5 760.5	\$121,124 \$141,957	644 565	460.8	466
497 541	-81.4777638 -81.5854898	41.4027982 41.3619972		N N	Y N	0.945	574 480	3.5	0.2	544.5 444.5	\$359,330 \$185,961	264 461	460.8 460.8 461.8	468
824 655	-81.4002789 -81.4441189	41.2964737 41.3290769		N N N	Y N	0.941	575 481	3.5	0.3	546.5 445.5	\$358,128 \$184,866	266	461.8 462.5 463.5	409
238 669	-81.3767959 -81.4462846	41.3358677 41.3191519		N N N	N N N	1.368 1.364	483 484	5.1	0.5	445.5 447.5 448.5	\$184,000 \$184,510 \$184,089	465 466	465.2	472
397 293	-81.4866693 -81.3554862	41.3611793 41.3244852		N N N	N N N	1.364 1.205	485 516	5.1 5.1 4.5	0.5	448.5 449.5 385	\$184,008	460 467 503	466.2 467.2 468.0	473
270	-81.3846042	41.3187819		N N N	N	1.356	486 517	5.0	0.5	450.5 386.5	\$167,571 \$183,198	468	468.2	476
406 919	-81.4774766 -81.5623604	41.3680369 41.3712362	3	Y	N Y	1.204 0.353	56	4.5 1.3	0.8	794	\$167,503 \$143,150	504 562	469.2 470.7	477 478
683 301	-81.4524656 -81.3947074	41.3320238 41.3494809		N N	N N	1.334 1.321	489 491	4.9 4.9	0.4	454 455.5	\$180,964 \$179,615	472 474	471.7 473.5	479 480
656 496	-81.4462684 -81.4754548	41.3291230 41.3950436		N N	N Y	1.318 0.917	492 589	4.9 3.4	0.4	456.5 560.5	\$179,349 \$349,935	475 276	474.5 475.2	481 482
890 700	-81.4398135 -81.4540739	41.2625880 41.3301844		N N	N N	1.317 1.314	493 494	4.9 4.9	0.4	457.5 458.5	\$179,231 \$178,921	476 477	475.5 476.5	483 484
247 519	-81.3724915 -81.4564123	41.3370783 41.3599959		N N	N N	1.154 1.294	525 496	4.3 4.8	0.8 0.4	397.5 460.5	\$162,329 \$176,850	513 480	478.5 478.8	485 486
478 601	-81.4832423 -81.3931167	41.4263143 41.3416126		N N	N N	1.288 1.282	497 498	4.8 4.8	0.4	461.5 462.5	\$176,238 \$175,537	481 482	479.8 480.8	487 488
169 739	-81.3493150 -81.4179310	41.2092541 41.2868530		N N	N N	1.272 1.267	499 501	4.7 4.7	0.4 0.4	463.5 465	\$174,540 \$174,024	483 485	481.8 483.7	489 490
955 421	-81.6057901 -81.4150857	41.3676652 41.3602260		N N	Y N	0.897 1.252	597 502	3.3 4.6	0.3 0.4	569 467	\$343,417 \$172,492	285 486	483.7 485.0	491 492
129 938	-81.3898821 -81.5762261	41.2298696 41.3713180		N N	N Y	1.250 0.896	503 600	4.6 3.3	0.4 0.3	468 572	\$172,298 \$342,818	487 286	486.0 486.0	493 494
962 454	-81.4772295 -81.4773092	41.3147165 41.4279259		N N	N N	1.248 1.244	504 505	4.6 4.6	0.4 0.4	469.5 471.5	\$172,063 \$171,676	488 491	487.2 489.2	495 496
712 714	-81.4759486 -81.4956324	41.3489231 41.3441073		N N	N N	1.113 1.244	536 506	4.1 4.6	0.7 0.4	407.5 472.5	\$158,123 \$171,653	526 492	489.8 490.2	497 498
463 85	-81.5110300 -81.3827102	41.4491804 41.2495846		N N	N Y	1.109 0.881	537 606	4.1 3.3	0.7 0.3	409.5 579	\$157,645 \$337,823	527 289	491.2 491.3	499 500
167 620	-81.3527884 -81.4001517	41.2071199 41.3268089		N N	N Y	1.232 0.876	507 610	4.6 3.2	0.4 0.3	475 583	\$170,362 \$336,276	493 290	491.7 494.3	501 502
586 838	-81.3970938 -81.3944460	41.3538063 41.2591661		N N	N N	1.219 1.218	511 512	4.5 4.5	0.4 0.4	477.5 478.5	\$169,020 \$168,984	497 498	495.2 496.2	503 504
128 223	-81.3880153 -81.3651362	41.2291661 41.3415853	1	N	N N	0.688	161 513	2.6 4.5	0.3	652.5 479.5	\$114,068 \$167,822	676 500	496.5 497.5	505 506
719 757	-81.4819926 -81.4240326	41.3148603 41.3016416		N N	N N	1.207	514 515	4.5	0.4	480.5 481.5	\$167,822 \$167,635	501 502	498.5 499.5	507 508
501 624	-81.4516594 -81.3935112	41.3814184 41.3257290	1-2 GRAY	N N	N Y	0.669	153 616	2.5	0.3	661 590	\$112,103 \$326,523	687 299	500.3 501.7	509 510
190 422	-81.3793957 -81.4169487	41.2957551 41.3533135		N N	N N	1.193	518 519	4.4	0.4	483.5 484.5	\$166,342 \$166,276	505 506	502.2 503.2	510 511 512
769 764	-81.4324849 -81.4346706	41.3060508 41.3026923		N N N	N N N	1.045	549 521	4.4 3.9 4.4	0.4	425.5	\$166,276 \$151,041 \$165,274	537 507	503.2 503.8 504.8	512 513 514
1	-81.3646997	41.2009756		N N N	N N N	1.176	521 522 523	4.4 4.3	0.4	487.5	\$164,614	509	506.2	515
287 366	-81.3859818 -81.5186850	41.2974414 41.4368779		N	N	1.170 1.162	524	4.3	0.4	488.5 490.5	\$163,965 \$163,142	510 512	507.2 508.8	516 517
825 174	-81.3998130 -81.3407274	41.2984059 41.2234360		N N	Y N	0.823	625 526	3.1 4.3	0.3	597 492	\$318,616 \$162,170	306 514	509.3 510.7	518 519
665 314	-81.4425074 -81.4820811	41.3237302 41.4001581		N N	N N	1.151 1.150	527 528	4.3 4.3	0.4	493 494	\$162,015 \$161,924	515 516	511.7 512.7	520 521
727 386	-81.4440464 -81.4940314	41.2784723 41.3761741	3	N Y	N Y	1.142 0.287	529 58	4.2 1.1	0.4 0.1	495 837.5	\$161,107 \$121,004	517 646	513.7 513.8	522 523
334 678	-81.4653430 -81.4519307	41.3995301 41.3295657		N N	N N	1.137 1.017	530 560	4.2 3.8	0.4 0.7	496 435	\$160,518 \$148,145	518 550	514.7 515.0	524 525
711 540	-81.4677215 -81.4126844	41.3489659 41.3519445		N N	N N	1.133 1.130	531 532	4.2 4.2	0.4	497 498	\$160,121 \$159,836	519 520	<u>515.7</u> <u>516.7</u>	526 527
48 408	-81.3798854 -81.4771513	41.2256789 41.3706191		N N	N N	1.125 1.124	533 534	4.2 4.2	0.4 0.4	500 501	\$159,297 \$159,201	522 523	<u>518.3</u> 519.3	528 529
881 736	-81.4344677 -81.4112035	41.2627856 41.2800831		N N	N N	1.114 0.989	535 566	4.1 3.7	0.4 0.6	502 442	\$158,170 \$145,229	525 556	<u>520.7</u> 521.3	530 531
789 899	-81.3985411 -81.4046504	41.2937917 41.2290570		N N	Y N	0.787 1.108	640 538	2.9 4.1	0.3 0.4	610.5 504	\$306,457 \$157,606	317 528	522.5 523.3	532 533
717 339	-81.4750321 -81.4557327	41.3339958 41.3885545		N N	N N	1.084 1.077	541 543	4.0 4.0	0.4	508 510	\$155,071 \$154,332	531 532	526.7 528.3	534 535
933 563	-81.5703340 -81.5038504	41.3743328 41.3736551	3	Y N	Y N	0.264 1.074	59 544	1.0 4.0	0.1 0.4	847 511	\$113,411 \$154,050	679 533	528.3 529.3	536 537
926 212	-81.5516929 -81.3769909	41.3705287 41.3152937	3	Y N	Y N	0.264	60 545	1.0 4.0	0.1 0.4	848 512.5	\$113,302 \$153,312	681 534	529.7 530.5	538 539
466 720	-81.4920248 -81.4813502	41.4536474 41.3135911		N N	N N	1.055 1.048	546 548	3.9 3.9	0.4 0.4	514 516	\$152,062 \$151,350	535 536	531.7 533.3	540 541
26 196	-81.3526485 -81.3772042	41.2281228 41.2989102		N N	N N	1.043 1.038	550 551	3.9 3.9	0.4 0.4	517.5 518.5	\$150,884 \$150,301	538 539	535.2 536.2	542 543
553 887	-81.4713633 -81.4133337	41.4071875 41.2473545		N N	N N	1.034 0.936	552 580	3.8 3.5	0.4	520.5 460	\$149,906 \$139,807	540 575	537.5 538.3	544 545
61 263	-81.3674588 -81.3865662	41.2394009 41.3383754		N N	N N	1.033 1.033	553 554	3.8 3.8	0.4	522 523	\$149,840 \$149,793	542 543	539.0 540.0	546 547
818 791	-81.3937983 -81.3978906	41.2809332 41.2978317		N N	N Y	1.033 0.742	555 660	3.8 2.8	0.4	524 632.5	\$149,779 \$291,311	544 331	541.0 541.2	548 549
71 713	-81.3586588 -81.4791140	41.2443696 41.3495068		N N	N N	0.932	584 556	3.5 3.8	0.6	463 526	\$139,331 \$149,003	579 546	542.0 542.7	550 551
527 16	-81.4809525 -81.3619331	41.3709854 41.1813350		N N	N N N	0.927	585 557	3.4 3.8	0.4	464.5 527	\$138,827 \$143,770	540 581 547	543.5 543.7	552 553
843 88	-81.3619331 -81.4316573 -81.3479842	41.1813350 41.2632043 41.2489039		N N N	N N N	1.023 1.020 1.019	557 558 559	3.8 3.8 3.8	0.4	527 528 529	\$148,770 \$148,457 \$148,395	547 548 549	543.7 544.7 545.7	553 554 555
965 245	-81.4529849 -81.3716879	41.3047511 41.3316674		N N N	N N N	1.019 1.014 1.008	562 563	3.8 3.7	0.4	529 531.5 532.5	\$140,395 \$147,844 \$147,196	551	545.7 548.2 549.2	555 557
245 135 698	-81.3716879 -81.3905047 -81.4557502	41.3316674 41.2169044 41.3289180		N N N	N N N	1.008 1.005 0.906	563 564 593	3.7 3.7 3.4	0.4 0.4 0.6	532.5 533.5 472.5	\$146,857	552 553 588	549.2 550.2 551.2	557 558 559
351	-81.4679995	41.4291561		Ν	Ν	0.997	593 565 567	3.7	0.4	534.5	\$136,664 \$146,127 \$145,004	555	551.5	560
372 922 720	-81.5170116 -81.5625408 81.4218907	41.3694169 41.3774552 41.2772200	3	N Y	N Y	0.987	61	3.7 0.8	0.4	536 868	\$145,004 \$97,885 \$142,442	557 731	553.3 553.3	561 562
729 498	-81.4218907 -81.4773907	41.2773290 41.4037530		N N	N Y	0.972	568 675	3.6 2.6	0.3	538 646.5	\$143,443 \$276,159	560 345	555.3 555.5	563 564
391 533	-81.5121355 -81.4204707	41.3569069 41.3635481		N N	N N	0.971 0.968	569 570	3.6 3.6	0.3	539 540	\$143,419 \$143,076	561 563	<u>556.3</u> 557.7	565 566
213 168	-81.3817520 -81.3527246	41.3154590 41.2065342		N N	N N	0.963 0.947	572 573	3.6 3.5	0.3	541.5 542.5	\$142,601 \$140,946	564 567	559.2 560.8	567 568
221 918	-81.3485564 -81.5608765	41.2946004 41.3740026	3	N Y	N Y	0.885 0.192	605 62	3.3 0.7	0.6 0.1	482.5 879.5	\$134,469 \$89,580	598 744	561.8 561.8	569 570
924 891	-81.5564853 -81.3991355	41.3693474 41.2340952	3	Y N	Y N	0.189 0.941	63 576	0.7 3.5	0.1 0.3	882.5 547.5	\$88,335 \$140,295	745 570	563.5 564.5	571 572
492 716	-81.4893553 -81.4770322	41.3822049 41.3337437		N N	N N	0.940 0.939	577 578	3.5 3.5	0.3 0.3	548.5 549.5	\$140,213 \$140,046	571 572	565.5 566.5	573 574
159	-81.3808804	41.2225868		N	N	0.937	579	3.5	0.3	550.5	\$139,846	574	567.8	575


								AVGWLF	Basin							
WETLAND ID	Centroid Longitude	Centroid Latitude	ORAM Category	T&E Species?	Managed Area?	Area in Acres	Ecological Rank	Total Volume Processed		Hydro Rank (Average)		Economic Value	Economic Rank		Average Rank	Final Rank
920 836	-81.5615360 -81.3946542	41.3722052 41.2606726	3	Y N	Y N	0.160 0.866	64 611	0.6 3.2	0.1 0.6	895 490.5		\$78,831 \$132,500	747 606		568.7 569.2	576 577
413 424	-81.4641251 -81.4133825	41.3551795 41.3634708		N N	N N	0.934 0.933	581 582	3.5 3.5	0.3 0.3	552.5 553.5		\$139,539 \$139,491	576 577		569.8 570.8	578 579
520 928	-81.4612748 -81.5503667	41.3553583 41.3706443	3	N Y	N Y	0.933 0.146	583 65	3.5 0.5	0.3 0.1	554.5 899		\$139,431 \$74,049	578 760		571.8 574.7	580 581
674 219	-81.4311826 -81.3483420	41.3152183 41.2855451		N N	N N	0.924 0.843	586 617	3.4 3.1	0.3 0.5	557.5 497.5		\$138,480 \$130,147	582 612		575.2 575.5	582 583
225 927	-81.3543372 -81.5497816	41.3184770 41.3714986	3	N Y	N Y	0.923	587 66	3.4 0.5	0.3	558.5 902		\$138,448 \$73,614	583 761		576.2 576.3	584 585
893 740	-81.3968155 -81.4242433	41.2166669 41.2882763		N N	N N	0.918	588 619	3.4 3.1	0.3	559.5 499.5		\$137,890 \$129,784	584 614		577.2 577.5	586 587
595 793	-81.4128987 -81.3994278	41.3439889 41.2968789		N N	N Y	0.913	590 698	3.4	0.3	561.5 672		\$137,402 \$253,755	585 368		578.8 579.3	588 589
435 911	-81.5216660 -81.3974184	41.4220817 41.2241502		N N	N N	0.833	620 591	3.1 3.4	0.5	503.5 563		\$129,087 \$136,930	615 586		579.5 580.0	590 591
921 214	-81.5621568 -81.3471105	41.3727443 41.3030899	3	Y N	Y N	0.139	67 592	0.5	0.1	903 564		\$71,992 \$136,704	770		580.0 581.0	592 593
308	-81.5172332	41.3927209		N N N	N N N	0.905	592 594 624	3.4	0.3	565.5 507.5		\$136,598	589 619		582.8	594
206 862	-81.3769268 -81.3982467	41.3072503 41.2472282		N	N	0.827	595	3.1 3.4	0.5	566.5		\$128,445 \$136,473	590		583.5 583.8	595 596
766 434	-81.4328946 -81.5210720	41.3041447 41.4110252		N N	N N	0.897	596 627	3.3 3.0	0.3	568 511		\$135,761 \$127,635	591 621		585.0 586.3	597 598
814 267	-81.3970573 -81.3828025	41.2842656 41.3391834	2 MOD	N N	N N	0.897 0.319	598 119	3.3 1.2	0.3	570 810		\$135,759 \$57,867	592 833		586.7 587.3	599 600
609 544	-81.4118598 -81.4908547	41.3392344 41.4400449		N N	N N	0.896 0.816	599 629	3.3 3.0	0.3 0.5	571 513		\$135,621 \$127,380	593 623		587.7 588.3	601 602
402 298	-81.4643140 -81.3886006	41.3595011 41.3484807	1	N N	N N	0.895 0.358	601 162	3.3 1.3	0.3 0.2	573 790.5		\$135,539 \$61,899	594 817		589.3 589.8	603 604
564 932	-81.5117830 -81.5638233	41.3623543 41.3764098	3	N Y	N Y	0.895 0.123	602 68	3.3 0.5	0.3 0.1	574 908		\$135,470 \$66,643	595 795		590.3 590.3	605 606
594 686	-81.4129141 -81.4476485	41.3429127 41.3345885		N N	N N	0.891 0.887	603 604	3.3 3.3	0.3 0.3	575 576		\$135,125 \$134,662	596 597		591.3 592.3	607 608
948 697	-81.5469030 -81.4553681	41.3889894 41.3298923	3	Y N	Y N	0.117 0.880	69 607	0.4 3.3	0.1 0.3	914 580		\$64,548 \$133,999	805 602		596.0 596.3	609 610
522 207	-81.4579007 -81.3769026	41.3705197 41.2977170		N N	N N	0.879 0.878	608 609	3.3 3.3	0.3	581 582		\$133,880 \$133,798	603 604	F	597.3 598.3	611 612
929 239	-81.5491238 -81.3808000	41.3714046 41.3383723	3	Y N	Y N	0.115	70 639	0.4	0.1	916 524.5		\$63,920 \$124,417	810 633	F	598.7 598.8	613 614
775 989	-81.4243142 -81.4006607	41.3042764 41.3496074		N N	N N N	0.860	612 613	3.2	0.3	585.5 586.5		\$131,939 \$131,453	607 608		601.5 602.5	615 616
288 752	-81.3898092 -81.4173317	41.2850724 41.2968948	3	N Y	Y	0.566	722	2.1	0.2	696 919		\$232,411 \$60,987	390 822		602.7 604.0	617 618
774 778	-81.4253782 -81.4086514	41.3049274 41.2999782	5	N N	N N	0.849	614 615	3.2 3.1	0.3	588 589		\$130,784 \$130,707	610 611		604.0 605.0	619 620
1013	-81.3595427	41.2440488		N	N	0.770	647	2.9	0.5	531		\$122,549	640		606.0	621
118 947	-81.3863300 -81.5747992	41.2523802 41.3785195	3	N Y	N Y	0.842	618 72	3.1 0.4	0.3	591.5 924		\$130,042 \$58,696	613 829		607.5 608.3	622 623
226 980	-81.3561714 -81.3955718	41.3232631 41.2200587		N N	N N	0.757 0.828	649 621	2.8 3.1	0.5 0.3	535 593.5		\$121,200 \$128,602	643 616		609.0 610.2	624 625
445 796	-81.4618353 -81.4032043	41.4129734 41.2971289		N N	Y N	0.546 0.827	730 622	2.0 3.1	0.2 0.3	704 594.5		\$225,830 \$128,513	399 617		611.0 611.2	626 627
930 373	-81.5490838 -81.5098713	41.3709214 41.3734178	3	Y N	Y N	0.096 0.827	73 623	0.4 3.1	0.1 0.3	927 595.5		\$57,603 \$128,500	836 618		612.0 612.2	628 629
360 138	-81.4820519 -81.3833847	41.4306804 41.2184235		N N	N N	0.819 0.818	626 628	3.0 3.0	0.3 0.3	598 599.5		\$127,674 \$127,599	620 622		614.7 616.5	630 631
477 228	-81.4882497 -81.3571990	41.4272283 41.3235122		N N	N N	0.816 0.742	630 659	3.0 2.8	0.3 0.5	601 542		\$127,372 \$119,731	624 655		618.3 618.7	632 633
978 232	-81.3966999 -81.3735537	41.2256473 41.3402928		N N	N N	0.815 0.815	631 632	3.0 3.0	0.3 0.3	602 603		\$127,262 \$127,201	625 626		619.3 620.3	634 635
481 770	-81.4731857 -81.4321423	41.4085767 41.3054793		N N	Y N	0.518 0.810	737 633	1.9 3.0	0.2 0.3	712.5 604		\$216,544 \$126,704	412 627		620.5 621.3	636 637
410 220	-81.4585109 -81.3481463	41.3721750 41.2879961		N N	N N	0.738	662 634	2.7 3.0	0.5	544.5 605		\$119,267 \$126,599	658 628		621.5 622.3	638 639
983 667	-81.3999644 -81.4472950	41.3481386 41.3221185		N N	N N	0.806	635 636	3.0 3.0	0.3	606 607		\$126,313 \$125,255	629 630		623.3 624.3	640 641
726	-81.4533859 -81.3697207	41.2847029 41.3169447		N N	N N	0.794	637 666	2.9 2.7	0.3	608 551		\$125,111 \$117,726	631 662		625.3 626.3	642 643
860 450	-81.3961912 -81.4669095	41.2529084 41.4043066		N N	N N	0.790	638 667	2.9	0.3	609 552		\$124,633 \$117,081	632 663		626.3 627.3	644 645
925 657	-81.5557503 -81.4476195	41.3695171	3	Y N	Y N	0.078	74 641	0.3	0.0	937 611.5		\$51,559 \$124,240	873 634		628.0 628.8	646 647
324	-81.4911149	41.3298886 41.3897409		N	N	0.781	642	2.9	0.3	613		\$123,740	635		630.0	648
934 90	-81.5730810 -81.3715511	41.3736345 41.2745074	3	Y N	Y Y	0.076	75 744	0.3	0.0	939 719.5		\$50,771 \$210,654	876 428		630.0 630.5	649 650
886 1000	-81.3991517 -81.4607942	41.2438185 41.3245327		N N	N N	0.773	643 644	2.9 2.9	0.3 0.3	614 615		\$122,937 \$122,868	636 637		631.0 632.0	651 652
809 157	-81.4038596 -81.3826121	41.2912761 41.2126771	1-2 GRAY	N N	N N	0.773	645 154	2.9 0.9	0.3	616 862.5		\$122,856 \$49,112	638 884		633.0 633.5	653 654
877 763	-81.4254944 -81.4329553	41.2602604 41.3021266		N N	N N	0.772	646 648	2.9 2.8	0.3	617 619		\$122,769 \$122,239	639 641		634.0 636.0	655 656
946 459	-81.5737283 -81.5057653	41.3779011 41.3734813	3	Y N	Y N	0.063 0.756	76 650	0.2 2.8	0.0 0.3	943 621.5		\$46,670 \$121,090	894 645	\square	637.7 638.8	657 658
758 660	-81.4261515 -81.4466238	41.3018832 41.3273711		N N	N N	0.754 0.751	651 652	2.8 2.8	0.3 0.3	622.5 623.5		\$120,942 \$120,657	647 648		640.2 641.2	659 660
728 835	-81.4252077 -81.3945038	41.2783556 41.2612609		N N	N N	0.751 0.683	653 682	2.8 2.5	0.3 0.4	624.5 567		\$120,652 \$113,566	649 678	\square	642.2 642.3	661 662
570 323	-81.4912119 -81.4899719	41.3623002 41.3867566		N N	N N	0.750 0.749	654 655	2.8 2.8	0.3 0.3	626.5 627.5		\$120,469 \$120,461	650 651		643.5 644.5	663 664
14 321	-81.3605927 -81.4906856	41.1790180 41.3828510		N N	N N	0.749 0.677	656 684	2.8 2.5	0.3 0.4	628.5 571.5		\$120,441 \$112,926	652 682	F	645.5 645.8	665 666
935	-81.5717460 -81.3898845	41.3733818 41.2445203	3	Y N	Y N	0.046	77 657	0.2	0.0	946 629.5		\$40,906 \$120,384	915 653	P	646.0 646.5	667 668
205 873	-81.3775650 -81.4121333	41.3075370 41.2584014		N N	N N	0.677	685 658	2.5	0.4	572.5 630.5		\$112,921 \$120,149	683 654	Ħ	646.8 647.5	669 670
944 635	-81.5847842 -81.4029201	41.3754705 41.3135339		N N	Y	0.481	754	1.8	0.2	729.5		\$185,772 \$185,481	462		648.5 649.5	671 672
18 936	-81.3572661 -81.5721826	41.3135339 41.1823819 41.3735061	3	N N Y	N Y	0.481	755 661 78	2.8 0.1	0.2	633.5 948		\$185,481 \$119,634 \$37,222	463 657 929	Ħ	650.5 651.7	672 673 674
21	-81.3348273	41.2276578	3	N	N	0.737	663	2.7	0.3	635		\$119,202	659	Ħ	652.3	675
395 839	-81.4921341 -81.3966247	41.3550115 41.2544822		N N	N N	0.735	664 665	2.7 2.7	0.3	636 637		\$118,963 \$118,786	660 661		653.3 654.3	676 677
355 198	-81.4895377 -81.3824654	41.4370499 41.3028088		N N	N N	0.716	668 669	2.7 2.6	0.3	639 640	_	\$117,031 \$116,761	664 665		657.0 658.0	678 679
823 950	-81.4119922 -81.5489518	41.2676145 41.3820396	3	N Y	N Y	0.714 0.021	670 79	2.6 0.1	0.3 0.0	641 951	_	\$116,738 \$32,590	666 948		659.0 659.3	680 681
188 756	-81.3841138 -81.4228989	41.2938196 41.3016622		N N	N N	0.707 0.703	671 672	2.6 2.6	0.3 0.3	642 643		\$116,040 \$115,635	667 668	H	660.0 661.0	682 683
954 767	-81.6071678 -81.4334752	41.3671215 41.3048440		N N	Y N	0.461 0.702	766 673	1.7 2.6	0.2 0.3	740.5 644		\$178,910 \$115,549	478 669		661.5 662.0	684 685
403 404	-81.4747333 -81.4760510	41.3669081 41.3680454		N N	N N	0.699 0.696	674 676	2.6 2.6	0.3 0.3	645 647.5		\$115,201 \$114,899	670 671	\square	663.0 664.8	686 687
411 690	-81.4575662 -81.4553823	41.3734038 41.3369519		N N	N N	0.694 0.691	677 678	2.6 2.6	0.3	648.5 649.5		\$114,731 \$114,399	672 673	P	665.8 666.8	688 689
513	-81.4839722	41.3557180		N	N	0.690	679	2.6	0.3	650.5		\$114,328	674		667.8	690

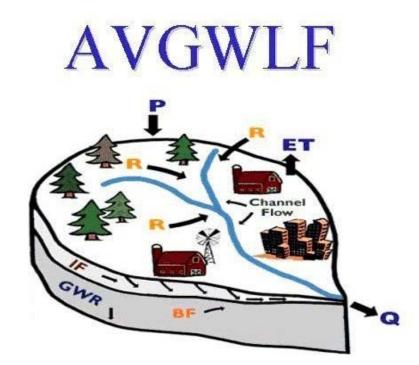
	Centroid		ORAM	T&E	Managed	Area in	Ecological	AVGWLF Total Volume	Basin Volume (ac-	Hydro Rank			Economic		Average	Final
WETLAND ID 902	Longitude -81.4008152	Centroid Latitude 41.2280444	Category	Species?	Area?	Acres 0.689	Rank 680	Processed 2.6	ft)	(Average) 651.5	_	Economic Value \$114,207	Rank 675		Rank 668.8	Rank 691
666 306	-81.4475356 -81.5582298	41.3237246 41.3934060		N	N	0.684	681 708	2.5	0.3	654 602		\$113,704 \$105,636	677 706		670.7 672.0	692 693
827 292	-81.4529149 -81.3634832	41.3289508 41.3122323		N N	N N	0.681	683 686	2.5	0.3	655.5 658		\$113,389 \$112,862	680 684		672.8 676.0	694 695
<u>592</u>	-81.4069089	41.3464895		Ν	N	0.596	712	2.2	0.4	607		\$104,566	710		676.3	696
654 495	-81.4362587 -81.4748842	41.3313981 41.3933761		N N	N Y	0.676 0.434	687 782	2.5 1.6	0.3 0.2	659 757		\$112,850 \$169,954	685 494		677.0 677.7	697 698
215 89	-81.3450677 -81.3573489	41.3033919 41.2717309		N N	N N	0.670 0.666	688 689	2.5 2.5	0.3 0.3	660 662		\$112,256 \$111,803	686 688		678.0 679.7	699 700
751 202	-81.4184311 -81.3804612	41.2964278 41.3059939		N N	Y N	0.432	784 690	1.6 2.5	0.2	759 663.5	_	\$169,217 \$111,608	496 689		679.7 680.8	701 702
464 543	-81.5066736 -81.5083186	41.4337904 41.4515464		N N	N N	0.658 0.652	691 692	2.4 2.4	0.3 0.3	665 666		\$110,968 \$110,362	690 691		682.0 683.0	703 704
638 649	-81.3920819 -81.4023382	41.3146241 41.3059494		N N	Y	0.428	788	1.6	0.2	762.5 667		\$168,141	499 692		683.2	705
494	-81.4775335	41.3828625		N	N	0.649	694	2.4 2.4	0.3 0.3	668		\$110,198 \$110,094	693		684.0 685.0	706 707
672 581	-81.4368483 -81.4639189	41.3190603 41.3688718		N N	N N	0.649 0.639	695 696	2.4 2.4	0.3	669 670		\$110,013 \$108,988	694 695		686.0 687.0	708 709
748 760	-81.4258645 -81.4295933	41.2998680 41.3046618		N N	N N	0.630 0.629	697 699	2.3 2.3	0.2	671 673	_	\$108,087 \$107,961	696 697		688.0 689.7	710 711
448 696	-81.4796727 -81.4552676	41.4144921 41.3305977		N N	N N	0.627 0.626	700 701	2.3 2.3	0.2 0.2	674 675		\$107,749 \$107,686	698 699		690.7 691.7	712 713
915	-81.3948690	41.2194005		Ν	N	0.622	702 703	2.3	0.2	676		\$107,281	700		692.7	714
853 393	-81.4023304 -81.5178444	41.2589589 41.3530189		N N	N N	0.621 0.613	704	2.3	0.2 0.2	677 678		\$107,194 \$106,368	701 702		693.7 694.7	715 716
875 688	-81.4168887 -81.4520547	41.2609687 41.3346834		N N	N N	0.553 0.613	729 705	2.1 2.3	0.3	631.5 679		\$100,082 \$106,347	726 703		695.5 695.7	717 718
299 715	-81.3871330 -81.4781918	41.3485145 41.3327322		N N	N N	0.611 0.607	706 707	2.3 2.3	0.2 0.2	680 681	_	\$106,163 \$105,679	704 705		696.7 697.7	719 720
453 795	-81.4514699 -81.4021592	41.4054152 41.2982773		N	N	0.604	709 710	2.2	0.2	682.5 683.5		\$105,410 \$105,311	707 708		699.5 700.5	721 722
883 439	-81.4375118	41.2625477		N N N	N Y	0.598	710 711 800	2.2	0.2	684.5 775.5	╡	\$104,787	709		701.5	723 724
777	-81.4740431 -81.4098440	41.4167113 41.3009230		N	N	0.592	713	2.2	0.2	686.5		\$156,166 \$104,193	711		703.5	725
699 473	-81.4538653 -81.4715738	41.3297397 41.4346793		N N	N N	0.592 0.584	714 715	2.2 2.2	0.2 0.2	687.5 689		\$104,182 \$103,308	712 713		704.5 705.7	726 727
963 684	-81.4576799 -81.4536196	41.3158578 41.3320575		N N	N N	0.526 0.581	735 716	2.0 2.2	0.3 0.2	650.5 690	┦	\$97,314 \$103,019	734 714		706.5 706.7	728 729
884 257	-81.3925110 -81.3811820	41.2492986 41.3256762		N	N	0.578	717	2.1	0.2	691 692		\$102,741 \$102,446	715 716		707.7	730 731
977	-81.3969426	41.2254796		N	N	0.572	719	2.1	0.2	693		\$102,048	717		709.7	732
417 951	-81.4464873 -81.6039726	41.3650863 41.3647953		N N	N Y	0.517 0.357	739 817	1.9 1.3	0.3 0.2	654 755.5		\$96,434 \$144,515	737 558		710.0 710.2	733 734
442 347	-81.4643486 -81.4662214	41.4163139 41.4339478		N N	N N	0.571 0.568	720 721	2.1 2.1	0.2	694 695		\$102,014 \$101,647	718 719		710.7 711.7	735 736
693 375	-81.4570030 -81.5074165	41.3317689 41.3756983		N N	N N	0.561 0.560	723 724	2.1 2.1	0.2	697 698	_	\$100,915 \$100,896	720 721		713.3 714.3	737 738
117 126	-81.3863832 -81.3892914	41.2530212 41.2308369		N N	N N	0.560 0.560	725 726	2.1 2.1	0.2	699 700		\$100,868 \$100,854	722 723		715.3 716.3	739 740
596 484	-81.4155317 -81.4756189	41.3431775 41.4050386		N N	N Y	0.556	727 812	2.1	0.2	701.5		\$100,400 \$146,803	724		717.5	741
30	-81.3423893	41.2268186		Ν	N	0.555	728	2.1	0.2	702.5		\$100,348	725		718.5	743
171 658	-81.3451194 -81.4476214	41.2086791 41.3286825		N N	N N	0.546 0.540	731 732	2.0 2.0	0.2	705 706		\$99,403 \$98,786	728 729		721.3 722.3	744 745
694 276	-81.4582819 -81.3837060	41.3302374 41.3172083		N N	N N	0.532 0.527	733 734	2.0 2.0	0.2	707.5 708.5	_	\$97,910 \$97,427	730 733		723.5 725.2	746 747
888 661	-81.4178030 -81.4462587	41.2442749 41.3275261		N N	N N	0.485 0.521	752 736	1.8 1.9	0.3 0.2	671.5 711.5		\$74,750 \$96,781	755 735		726.2 727.5	748 749
639 826	-81.3929097 -81.4114248	41.3139413 41.2994359		N N	Y N	0.347	821 738	1.3	0.2	797.5 713.5		\$140,970	566 736		728.2 729.2	750 751
759	-81.4290870	41.3041571		N	N	0.480	756	1.8	0.3	676.5		\$96,525 \$74,175	757		729.8	752
389 939	-81.5231886 -81.5759604	41.3642536 41.3705063		N N	N Y	0.512 0.344	740 822	1.9 1.3	0.2	715.5 798.5		\$95,913 \$139,936	738 573		731.2 731.2	753 754
335 217	-81.4555426 -81.3577442	41.3964953 41.3079318		N N	N N	0.505 0.504	741 742	1.9 1.9	0.2	716.5 717.5	_	\$95,164 \$95,063	739 740		732.2 733.2	755 756
1010 15	-81.3587014 -81.3626208	41.2434598 41.1790100		N N	N N	0.502 0.500	743 745	1.9 1.9	0.2 0.2	718.5 721		\$94,848 \$94,647	741 742		734.2 736.0	757 758
718	-81.4743062 -81.4857239	41.3196028 41.4335332		N N	N N	0.467	763	1.7	0.3	686.5 722		\$72,851 \$76,025	766 749		738.5 739.0	759 760
682	-81.4494266	41.3315738		N	N	0.491	747	1.8	0.2	723		\$75,327	750		740.0	761
124 348	-81.3917398 -81.4788597	41.2315656 41.4339138		N N	N N	0.490 0.489	748 749	1.8 1.8	0.2 0.2	724 725		\$75,274 \$75,090	751 752		741.0 742.0	762 763
353 322	-81.4831503 -81.4922685	41.4370396 41.3862156		N N	N N	0.487 0.486	750 751	1.8 1.8	0.2 0.2	726 727	-	\$74,956 \$74,794	753 754	╞╴┣	743.0 744.0	764 765
960 443	-81.6026677 -81.4640303	41.3729128 41.4176036		N	Y	0.326	829 753	1.2	0.1	806 728.5		\$134,155 \$74,718	601 756		745.3 745.8	766 767
611 508	-81.4074104 -81.5191796	41.3344282 41.3670137		N N N	Y N	0.322	832 757	1.2	0.2	809 732	╡	\$132,636 \$74,076	605 758		748.7 749.0	768 769
394	-81.5182955	41.3545130		Ν	N	0.479	758	1.8	0.2	733	╡	\$74,076	759		750.0	770
216 186	-81.3578109 -81.3666767	41.3050628 41.2876395		N N	N Y	0.445 0.318	775 834	1.7 1.2	0.3 0.1	699 812		\$70,713 \$131,424	778 609		750.7 751.7	771 772
701 271	-81.4535260 -81.3859477	41.3309002 41.3203919		N N	N N	0.474 0.472	759 760	1.8 1.7	0.2 0.2	734 735	┦	\$73,611 \$73,360	762 763		751.7 752.7	773 774
914 976	-81.3945405 -81.3970714	41.2206803 41.2213628		N N	N N	0.440	776 761	1.6 1.7	0.3	703.5 736		\$70,207 \$73,119	779 764		752.8 753.7	775 776
224 833	-81.3596324 -81.4725778	41.3201384		N N N	N N	0.469	762	1.7 1.7 1.7	0.2	737 738.5		\$73,109	765 767		754.7	777
685	-81.4487654	41.3079576 41.3330331		N	N	0.462	765	1.7	0.2	739.5		\$72,596 \$72,362	768		757.5	779
865 359	-81.4002266 -81.4839616	41.2441584 41.4320920		N N	N N	0.460 0.457	767 768	1.7 1.7	0.2 0.2	741.5 742.5		\$72,209 \$71,882	769 771		759.2 760.5	780 781
846 317	-81.3944841 -81.4948874	41.2571066 41.3917915		N N	N N	0.450 0.430	769 786	1.7 1.6	0.2 0.3	743.5 713	4	\$71,185 \$69,176	772 787		761.5 762.0	782 783
802 731	-81.4010047 -81.4208115	41.2926926 41.2772202		N	N	0.450	770	1.7	0.2	744.5 745.5		\$71,170 \$71,095	773 774		762.5 763.5	784 785
302 456	-81.4985349	41.4649516		N N N	N N N	0.449	772	1.7	0.2	746.5		\$71,054	775		764.5	786
272	-81.5500251 -81.3840327	41.4002071 41.3206990		N	N	0.448	773	1.7	0.2	747.5	╡	\$68,978 \$70,997	776		764.5 765.5	787 788
123 876	-81.3885794 -81.4249779	41.2383415 41.2603049		N N	N N	0.448 0.439	774 777	1.7 1.6	0.2 0.2	748.5 752		\$70,938 \$70,020	777 780		766.5 769.7	789 790
336 896	-81.4477058 -81.3987959	41.3960087 41.2320131		N N	N N	0.438 0.437	778 779	1.6 1.6	0.2 0.2	753 754	┦	\$69,908 \$69,826	781 782		770.7 771.7	791 792
341 511	-81.4545978 -81.4886719	41.3888480 41.3632647		N N	N N	0.436	780 781	1.6 1.6	0.2	755 756		\$69,803 \$69,579	783 784		772.7 773.7	793 794
721	-81.4540992	41.3103131		Ν	Ν	0.433	783	1.6	0.2	758	╡	\$69,414	785		775.3	795
194 738	-81.3797831 -81.4139202	41.2982603 41.2856240		N N	N N	0.430	785 799	1.6 1.5	0.2	760 733		\$69,197 \$65,601	786 800		777.0 777.3	796 797
808 344	-81.4001121 -81.4542561	41.2947411 41.3838214		N N	Y N	0.290 0.429	857 787	1.1 1.6	0.1 0.2	834.5 761.5	╡	\$121,959 \$69,011	642 788	╘╴┝	777.8 778.8	798 799
675 505	-81.4353466 -81.5358441	41.3137504 41.3698272		N N	N N	0.422 0.419	790 791	1.6 1.6	0.2 0.2	764 765	7	\$68,351 \$68,017	790 791		781.3 782.3	800 801
265	-81.3840578	41.3394821 41.3014304		N N	N N	0.413	792 793	1.5 1.5	0.2	767		\$67,524	792 793		783.7 784.7	802 803
761	-81.4289093											\$67,186				. 003

WETLAND ID	Centroid Longitude	Centroid Latitude	ORAM Category	T&E Species?	Managed Area?	Area in Acres	Ecological Rank		AVGWLF Total Volume Processed	ft)	(Average)	Economic Value	Economic Rank		Average Rank	Final Rank
349 524	-81.4768501 -81.4827398	41.4314380 41.3729729		N N	N N	0.401 0.379	795 808		1.5 1.4	0.2 0.2	770 744	\$66,161 \$63,986	796 809		787.0 787.0	806 807
465 441	-81.4849777 -81.4697517	41.4431186 41.4148340		N N	N N	0.400 0.400	796 797		1.5 1.5	0.2	771 773	\$66,142 \$66,060	797 798		788.0 789.3	808 809
392 851	-81.5165761 -81.4010593	41.3525192 41.2563129		N N	N N	0.399 0.363	798 813		1.5 1.3	0.2	774 751	\$65,982 \$62,366	799 814		790.3 792.7	810 811
444 296	-81.4630340 -81.3922253	41.4182884 41.3492051		N N	N N	0.389 0.389	801 802		1.4 1.4	0.2	776.5 777.5	\$65,012 \$64,971	801 802		792.8 793.8	812 813
506 878	-81.5346982 -81.4334288	41.3723985 41.2555515		N N	N N	0.389 0.386	803 804		1.4 1.4	0.2 0.2	778.5 779.5	\$64,943 \$64,698	803 804		794.8 795.8	814 815
882 134	-81.4358956 -81.3892171	41.2632730 41.2170230		N N	N N	0.382 0.381	805 806		1.4 1.4	0.2	780.5 781.5	\$64,240 \$64,187	806 807		797.2 798.2	816 817
507 662	-81.5130973 -81.4473508	41.3710823 41.3266429		N N	N N	0.380	807 809		1.4 1.4	0.2	782.5 784	\$64,114 \$63,687	808 811		799.2 801.3	818 819
164	-81.3767574	41.2222086		N	N	0.376	810		1.4	0.2	785	 \$63,674	812		802.3	820
815 710	-81.3985345 -81.4641049	41.2818899 41.3488558		N N	N N	0.374 0.362	811 814		1.4 1.3	0.2	786 788.5	\$63,481 \$62,253	813 815		803.3 805.8	821 822
668 209	-81.4477384 -81.3728780	41.3227255 41.3116738		N N	N N	0.360 0.358	815 816		1.3 1.3	0.2 0.2	789.5 791.5	\$62,050 \$61,802	816 818		806.8 808.5	823 824
907 325	-81.4051822 -81.4926074	41.2280811 41.3902657		N N	N N	0.357 0.352	818 819		1.3 1.3	0.2	793 795	\$61,700 \$61,283	819 820		810.0 811.3	825 826
365 352	-81.5057953 -81.4820441	41.4426358 41.4386847		N N	N N	0.350 0.340	820 823		1.3 1.3	0.2	796.5 799.5	\$61,011 \$60,030	821 823	_	812.5 815.2	827 828
476 518	-81.4898480 -81.4615460	41.4278820 41.3631734		N N	N N	0.334 0.334	824 825		1.2 1.2	0.1 0.1	801 802	\$59,424 \$59,378	824 825		816.3 817.3	829 830
708	-81.4617369 -81.4865320	41.3458213 41.3866236		N N	N N	0.318	835 826		1.2	0.2	783 803	\$57,806 \$59,052	835 826		817.7 818.3	831 832
451 452	-81.4565656	41.4063023 41.4072966		N N	N N	0.329	827 828		1.2	0.1	804 805	\$58,886 \$58,743	827 828		819.3 820.3	833 834
328	-81.4568024 -81.4864701	41.3820704		Ν	N	0.325	830		1.2	0.1	807	\$58,491	830		822.3	835
273 446	-81.3840323 -81.4760045	41.3194768 41.4045893		N N	N Y	0.324 0.224	831 884	\square	1.2 0.8	0.1	808 865.5	\$58,379 \$100,054	831 727		823.3 825.5	836 837
707 309	-81.4586610 -81.5268482	41.3458281 41.3879705		N N	N N	0.319 0.314	833 836	\square	1.2 1.2	0.1 0.1	811 813.5	\$57,859 \$57,442	834 837	E	826.0 828.8	838 839
787 340	-81.3940545 -81.4551374	41.2873343 41.3888426		N N	Y N	0.216 0.314	887 837	H	0.8 1.2	0.1 0.1	869 814.5	\$97,433 \$57,375	732 838	F	829.3 829.8	840 841
388 242	-81.4899544 -81.3736105	41.3617712 41.3340394		N N	N N	0.314 0.313	838 839	\square	1.2 1.2	0.1	815.5 816.5	\$57,374 \$57,308	839 840	-	830.8 831.8	842 843
368 343	-81.5406494 -81.4552088	41.3712521 41.3853390		N	N N	0.313	840 841		1.2	0.1	817.5 818.5	\$57,305 \$57,263	841 842		832.8 833.8	844 845
863	-81.3980992 -81.4542656	41.2455329		N N	N N N	0.307	842 843		1.1	0.1	819.5 820.5	\$56,689	843 844		834.8 835.8	846
722 905	-81.4164760	41.3096865 41.2365305		N	N	0.307 0.301	844		1.1	0.1	821.5	\$56,657 \$56,029	845		836.8	847 848
436 440	-81.4758528 -81.4707192	41.4275596 41.4143493		N N	N Y	0.300 0.200	845 895		1.1 0.7	0.1 0.1	822.5 877	\$55,999 \$92,276	846 743		837.8 838.3	849 850
437 689	-81.4744557 -81.4532054	41.4256754 41.3344251		N N	N N	0.298 0.298	846 847		1.1 1.1	0.1	823.5 824.5	\$55,783 \$55,765	847 848		838.8 839.8	851 852
414 350	-81.4565492 -81.4732367	41.3583132 41.4284758		N N	N N	0.297 0.297	848 849		1.1 1.1	0.1	825.5 826.5	\$55,685 \$55,633	849 850		840.8 841.8	853 854
472 342	-81.4725324 -81.4638027	41.4347065 41.3868287		N N	N N	0.296 0.295	850 851		1.1 1.1	0.1 0.1	827.5 828.5	\$55,577 \$55,514	851 852		842.8 843.8	855 856
732 376	-81.4203132 -81.5058572	41.2774672 41.3718324		N N	N N	0.295	852 853		1.1 1.1	0.1	829.5 830.5	\$55,501 \$55,489	853 854		844.8 845.8	857 858
480 659	-81.4583381 -81.4472157	41.4131929 41.3273597		N N	Y N	0.173	905 854		0.6	0.1	889.5 831.5	\$83,213 \$55,470	746		846.8 846.8	859 860
750	-81.4205560	41.2984651		N	N	0.291	855		1.1	0.1	832.5	\$55,091	856		847.8	861
313 158	-81.4896514 -81.3805640	41.3950185 41.2188634		N N	N N	0.291 0.290	856 858		1.1 1.1	0.1 0.1	833.5 835.5	\$55,051 \$54,918	857 858		848.8 850.5	862 863
512 975	-81.4896051 -81.3932903	41.3556287 41.2221740		N N	N N	0.289 0.286	859 860		1.1 1.1	0.1	836.5 838.5	\$54,810 \$54,578	859 860		851.5 852.8	864 865
953 449	-81.6086035 -81.4873943	41.3654855 41.4131701		N N	Y N	0.155 0.263	913 868		0.6 1.0	0.1 0.1	898 824.5	 \$77,023 \$52,201	748 867	-	853.0 853.2	866 867
303 469	-81.5552493 -81.4889923	41.3992377 41.4382301		N N	N N	0.279 0.277	862 863		1.0 1.0	0.1	840.5 841.5	\$53,825 \$53,670	861 862	_	854.5 855.5	868 869
871 706	-81.4129093 -81.4597051	41.2467821 41.3455108		N N	N N	0.275 0.273	864 865		1.0 1.0	0.1	842.5 843.5	\$53,483 \$53,212	863 864		856.5 857.5	870 871
396 330	-81.4887099 -81.4734060	41.3525881 41.3832378		N N	N N	0.268	866 867		1.0	0.1	844.5 845.5	\$52,734 \$52,720	865 866		858.5 859.5	872 873
390 304	-81.5104433	41.3591899		N N	N N	0.262	869 870		1.0 1.0 1.0	0.1	849.5 850.5	\$52,120 \$52,151 \$52,109	868 869		862.2 863.2	874 875
385	-81.5546605 -81.4868302	41.3995561 41.3766508		N	N	0.261	871		1.0	0.1	851.5	\$52,007	870		864.2	876
364 807	-81.4989527 -81.4005405	41.4312554 41.2955610		N N	N N	0.259 0.257	872 873		1.0 1.0	0.1 0.1	852.5 853.5	 \$51,810 \$51,663	871 872		865.2 866.2	877 878
482 687	-81.4771029 -81.4452634	41.4082348 41.3355269		N N	N N	0.254 0.251	874 875	\square	0.9	0.1 0.1	854.5 855.5	\$51,328 \$51,006	874 875	E	867.5 868.5	879 880
326 867	-81.4866127 -81.4042864	41.3872793 41.2470607		N N	N N	0.245 0.244	876 877	H	0.9 0.9	0.1 0.1	856.5 857.5	\$50,354 \$50,342	877 878	F	869.8 870.8	881 882
908 817	-81.4054231 -81.3950767	41.2273883 41.2807299		N N	N N	0.241 0.239	878 879	P	0.9	0.1	858.5 859.5	\$49,986 \$49,750	879 881		871.8 873.2	883 884
709 557	-81.4623653 -81.4995321	41.3460711 41.3879380		N N	N N	0.235	880 881	H	0.9	0.1	860.5 861.5	\$49,428 \$49,324	882 883	-	874.2 875.2	885 886
854 555	-81.4031299 -81.4650216	41.2525854 41.4110660		N N	N N N	0.234	885 882	Ħ	0.8	0.1	856.5 863.5	\$47,896 \$48,883	887 885	F	876.2 876.8	887 888
768	-81.4330189	41.3065983		N	N	0.226	883	H	0.8	0.1	864.5	\$48,483	886		877.8	889
590 357	-81.4084547 -81.4929945	41.3474664 41.4396982		N N	N N	0.219	886 888	H	0.8	0.1	867 870	\$47,802 \$47,367	888 889		880.3 882.3	890 891
251 249	-81.3677102 -81.3704694	41.3334469 41.3363053		N N	N N	0.214 0.210	889 890		0.8 0.8	0.1	871 872	\$47,250 \$46,812	890 891		883.3 884.3	892 893
990 447	-81.4170753 -81.4803571	41.3449941 41.4129825		N N	N N	0.209 0.209	891 892	\square	0.8 0.8	0.1 0.1	873 874	\$46,781 \$46,759	892 893	F	885.3 886.3	894 895
903 455	-81.3979778 -81.5729693	41.2241317 41.3835358		N N	N N	0.204 0.201	893 894	H	0.8 0.7	0.1 0.1	875 876	\$46,211 \$45,969	895 896	F	887.7 888.7	896 897
418 356	-81.4310396 -81.4889724	41.3753130 41.4385555		N N	N N	0.193 0.190	896 897	P	0.7 0.7	0.1 0.1	878.5 880.5	\$45,132 \$44,799	897 899	F	890.5 892.2	898 899
858 195	-81.3990859 -81.3795330	41.2531641 41.2990265		N N	N N	0.189	898 899	F	0.7	0.1	881.5 883.5	\$44,705 \$44,662	900 901	F	893.2 894.5	900 901
702 230	-81.4549926 -81.3640383	41.3240872 41.3308938		N N N	N N N	0.186	900 901	Ħ	0.7	0.1	884.5 885.5	\$44,002 \$44,465 \$44,158	902 903		895.5 896.5	901 902 903
956	-81.6024210	41.3704107		N	Y	0.098	933	H	0.4	0.1	926	\$58,144	832		897.0	904
374 872	-81.5087163 -81.4147092	41.3745116 41.2516392		N N	N N	0.182	902 904	⊢	0.7	0.1	886.5 883	\$44,007 \$43,611	904 907		897.5 898.0	905 906
857 250	-81.4009264 -81.3690130	41.2526987 41.3355540		N N	N N	0.182 0.173	903 906	⊢	0.7 0.6	0.1 0.1	887.5 890.5	\$43,988 \$43,093	906 908		898.8 901.5	907 908
695 847	-81.4562349 -81.3942020	41.3309372 41.2562878		N N	N N	0.170 0.164	907 908	\square	0.6 0.6	0.1 0.1	891.5 892.5	\$42,799 \$42,236	909 910	┢	902.5 903.5	909 910
315 772	-81.4804126 -81.4296360	41.4001756 41.3059171		N N	N N	0.162 0.161	909 910	F	0.6 0.6	0.1 0.1	893.5 891.5	\$42,012 \$41,896	911 912	F	904.5 904.5	911 912
730 243	-81.4211870 -81.3734124	41.2775174 41.3353566		N N	N N	0.160	911 912	F	0.6	0.1	896 897	\$41,752 \$41,643	913 914	-	906.7 907.7	913 914
864	-81.3981522	41.2444018		N N N	N	0.139 0.145 0.145	912 914 915	Ħ	0.5	0.1	900 901	\$40,287	917	Þ	910.3	915
859 457	-81.3973426 -81.5014609	41.2533039 41.4032829		N	N N	0.135	916	H	0.5	0.1	904	\$40,259 \$39,245	918 919		911.3 913.0	916 917
852	-81.4014159 -81.3950510	41.2581418 41.2252708		N N	N N	0.132 0.130	917 918		0.5 0.5	0.1	905 906	 \$38,992 \$38,726	920 921	-	914.0 915.0	918 919

	Centroid		ORAM	T&E	Managed	Area in	Ecological	AVGWLF Total Volume	•			Economic	Average	Final
WETLAND ID	Longitude	Centroid Latitude	Category	Species?	Area?	Acres	Rank	Processed	ft)	(Average)	Economic Value	Rank	 Rank	Rank
943	-81.5794021	41.3722129		N	N	0.122	920	0.5	0.1	909	\$37,965	923	 917.3	921
229	-81.3607917	41.3287240		N	N	0.121	921	0.4	0.1	910	\$37,851	924	 918.3	922
438	-81.4700005	41.4276289		N	N	0.121	922	0.4	0.1	911	\$37,841	925	 919.3	923
850	-81.4019854	41.2550863		N	N	0.119	923	0.4	0.1	912	\$37,626	926	 920.3	924
904	-81.3971783	41.2238494		N	N	0.119	924	0.4	0.1	913	\$37,599	927	 921.3	925
1005	-81.4784971	41.3791047		N	Y	0.073	945	0.3	0.0	940.5	\$49,798	880	 921.8	926
<u>681</u>	-81.4498405	41.3308662		N	N	0.116	925	0.4	0.1	915	\$37,372	928	922.7	927
362	-81.4880836	41.4298513		N	N	0.115	926	0.4	0.1	917.5	\$37,191	930	924.5	928
354	-81.4879052	41.4368718		N	N	0.109	927	0.4	0.1	917.5	\$36,647	931	925.2	929
248	-81.3693147	41.3369446		N	N	0.105	928	0.4	0.1	920	\$36,190	932	926.7	930
361	-81.4869924	41.4302031		N	N	0.104	929	0.4	0.1	921	\$36,106	933	927.7	931
371	-81.5304680	41.3754074		N	N	0.102	930	0.4	0.1	922	\$35,930	934	928.7	932
625	-81.3942376	41.3266612		N	Y	0.058	947	0.2	0.0	944	\$45,043	898	929.7	933
870	-81.4129590	41.2498495		N	N	0.102	931	0.4	0.1	923	\$35,887	935	929.7	934
426	-81.4032426	41.3583599		N	N	0.099	932	0.4	0.1	925	\$35,650	936	931.0	935
945	-81.5837071	41.3753715		N	Y	0.055	948	0.2	0.0	945	\$44,001	905	932.7	936
369	-81.5398682	41.3712736		N	N	0.096	934	0.4	0.1	928	\$35,310	937	933.0	937
906	-81.4158467	41.2365285		N	N	0.096	935	0.4	0.1	929	\$35,297	938	934.0	938
24	-81.3360583	41.2315171		N	N	0.096	936	0.4	0.1	930	\$35,285	939	935.0	939
869	-81.4107681	41.2497252		N	N	0.092	937	0.3	0.1	931	\$34,878	940	936.0	940
377	-81.5049383	41.3677533		N	N	0.091	938	0.3	0.1	932	\$34,850	941	937.0	941
957	-81.6028978	41.3696013		N	Y	0.046	949	0.2	0.0	947	\$40,863	916	937.3	942
458	-81.4458354	41.3936519		N	N	0.086	940	0.3	0.0	933.5	\$34,282	943	938.8	943
855	-81.4026499	41.2515674		N	N	0.087	939	0.3	0.0	936	\$34,413	942	939.0	944
942	-81.5801725	41.3723759		N	N	0.081	941	0.3	0.0	934.5	\$33,836	944	939.8	945
258	-81.3812113	41.3244348		N	N	0.080	942	0.3	0.0	935.5	\$33,663	945	940.8	946
868	-81.4076442	41.2436437		N	N	0.080	943	0.3	0.0	939	\$33,647	946	942.7	947
941	-81.5798127	41.3724624		N	N	0.078	944	0.3	0.0	938	\$33,478	947	943.0	948
680	-81.4501904	41.3304530		N	N	0.065	946	0.2	0.0	942	\$32,210	949	945.7	949
723	-81.4622192	41.2897744		N	N	0.032	950	0.1	0.0	949	\$28,797	950	949.7	950
894	-81.4000293	41.2185990		N	N	0.030	951	0.1	0.0	950	\$28,646	951	950.7	951

Appendix C: AVGWLF Documentation

AVGWLF Overview


The recognition of the importance of non-point sources of pollution has led to increased efforts over the last two decades to identify and quantify non-point source pollutant loads, especially at the watershed level. Typical techniques for determining the extent and magnitude of non-point source pollution problems include long-term surface water monitoring and computer-based simulation modeling. Due to the time and expense associated with surface water monitoring, however, simulation modeling has been relied upon more frequently to provide needed information for the development and implementation of non-point source control programs. Watershed simulation models, in fact, are commonly considered to be essential tools for evaluating the sources and controls of sediment and nutrient loading to surface waters. Such models provide a framework for integrating the data that describe the processes and land-surface characteristics that determine pollutant loads transported to nearby water bodies.

The utilization of watershed models, however, is a difficult, tedious task because of the broad spatial and temporal scales that must be considered, as well as the large amount of data that must be compiled, integrated, analyzed, and interpreted. Fortunately, the last two decades of model development have coincided with rapid advancements in the development and use of geographic information system (GIS) technology. This technology provides the means for compiling, organizing, manipulating, analyzing, and presenting spatially-referenced model input and output data. Due to the many inherent benefits, GIS software has been used to support literally hundreds of watershed modeling efforts over the last 10-15 years.

Over the last 5-10 years, the Pennsylvania Department of Environmental Protection (DEP) has recognized the indispensability of GIS technology, and has endeavored to integrate it into all of the agency's internal program areas. Towards this end, Penn State has been assisting DEP in the development and implementation of various GIS-based watershed assessment tools. One such tool facilitates the use of the GWLF model via a GIS software (ArcView) interface. This tool (called AVGWLF) has recently been selected by DEP to help support its ongoing TMDL projects within Pennsylvania. The general approach in such projects is to: 1) derive input data for GWLF for use in an "impaired" watershed, 2) simulate nutrient and sediment loads within the impaired watershed, 3) compare simulated loads within the impaired watershed against loads simulated for a nearby "reference" watershed that exhibits similar landscape, development and agricultural patterns, but which also has been deemed to be unimpaired, and 4) identify and evaluate pollution mitigation strategies that could be applied in the impaired watershed to achieve pollutant loads similar to those calculated for the reference watershed. The primary bases of comparison between impaired and reference watersheds are the average annual nutrient and sediment loads estimated for each.

THE GWLF MODEL

The core watershed simulation model for this GIS-based application is the GWLF (Generalized Watershed Loading Function) model developed by Haith and Shoemaker (1987). The GWLF model provides the ability to simulate runoff, sediment, and nutrient (N and P) loadings from a watershed given variable-size source areas (e.g., agricultural, forested, and developed land). It also has algorithms for calculating septic system loads, and allows for the inclusion of point source discharge data. It is a continuous simulation model which uses daily time steps for weather data and water balance calculations. Monthly calculations are made for sediment and nutrient loads, based on the daily water balance accumulated to monthly values.

GWLF is considered to be a combined distributed/lumped parameter watershed model. For surface loading, it is distributed in the sense that it allows multiple land use/cover scenarios, but each area is assumed to be homogenous in regard to various attributes considered by the model. Additionally, the model does not spatially distribute the source areas, but simply aggregates the loads from each area into a watershed total; in other words there is no spatial routing. For sub-surface loading, the model acts as a lumped parameter model using a water balance approach. No distinctly separate areas are considered for sub-surface flow contributions. Daily water balances are computed for an unsaturated zone as well as a saturated sub-surface zone, where infiltration is simply computed as the difference between precipitation and snowmelt minus surface runoff plus evapotranspiration.

With respect to the major processes simulated, GWLF models surface runoff using the SCS-CN approach with daily weather (temperature and precipitation) inputs. Erosion and sediment yield are estimated using monthly erosion calculations based on the USLE algorithm (with monthly rainfall-runoff coefficients) and a monthly composite of KLSCP values for each source area (e.g., land cover/soil type combination). A sediment delivery ratio based on watershed size and a transport capacity based on average daily runoff are then applied to the calculated erosion to determine sediment yield for each source area. Surface nutrient losses are determined by applying dissolved N and P coefficients to surface runoff and a sediment coefficient to the yield portion for each agricultural source area. Point source discharges can also contribute to dissolved losses and are specified in terms of kilograms per month. Manured areas, as well as septic systems, can also be considered. Urban nutrient inputs are all assumed to be solid-phase, and the model uses an exponential accumulation and washoff function for these loadings. Sub-surface losses are calculated using dissolved N and P coefficients for shallow groundwater contributions to stream nutrient loads, and the subsurface sub-model only considers a single, lumped-parameter contributing area. Evapotranspiration is determined using daily weather data and a cover factor dependent upon land use/cover type. Finally, a water balance is performed daily using supplied or computed precipitation, snowmelt, initial unsaturated zone storage, maximum available zone storage, and evapotranspiration values.

In addition to the original model algorithms described above, a new streambank erosion

routine was also implemented as part of AVGWLF. This routine is based on an approach often used in the field of geomorphology in which monthly streambank erosion is estimated by first calculating a watershed-specific lateral erosion rate using the equation of the form

$LER = aq^{0.6}$

where *LER* = an estimated lateral erosion rate a = an empirically-derived constant related to the mass of soil eroded from the streambank depending upon various watershed conditions, and q = monthly stream flow in cubic meters per second.

After a value for *LER* has been computed, the total sediment load generated via streambank erosion is then calculated by multiplying the above erosion rate by the total length of streams in the watershed (in meters), the average streambank height (in meters), and the average soil bulk density (in kg/m3).

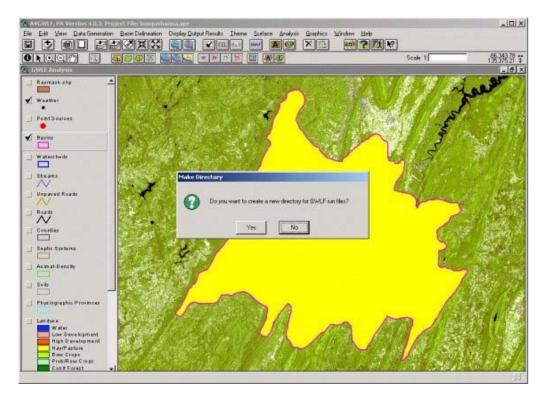
For execution, the model requires three separate input files containing transport-, nutrient-, and weather-related data. The transport (TRANSPRT.DAT) file defines the necessary parameters for each source area to be considered (e.g., area size, curve number, etc.) as well as global parameters (e.g., initial storage, sediment delivery ratio, etc.) that apply to all source areas. The nutrient (NUTRIENT.DAT) file specifies the various loading parameters for the different source areas identified (e.g., number of septic systems, urban source area accumulation rates, manure concentrations, etc.). The weather (WEATHER.DAT) file contains daily average temperature and total precipitation values for each year simulated.

GIS-BASED DERIVATION OF INPUT DATA FOR GWLF

As described previously, the use of GIS software for deriving input data for watershed simulation models such as GWLF is becoming fairly standard practice due to the inherent advantages of using GIS for manipulating spatial data. In this case, a customized interface developed by Penn State for the ArcView GIS package is used to parameterize input data for the GWLF model (Evans et al., 2002). In utilizing this interface, the user is prompted to identify required GIS files and to provide other information related to "non-spatial" model parameters (e.g., beginning and end of the growing season; and the months during which manure is spread on agricultural land). This information is subsequently used to automatically derive values for required model input parameters which are then written to the TRANSPORT.DAT and NUTRIENT.DAT input files needed to execute the GWLF model. Also accessed through the interface is a statewide weather database that contains twenty (25) years of temperature and precipitation data for seventy-eight (78) weather stations around Pennsylvania. This database is used to create the necessary WEATHER.DAT input file for a given watershed simulation.

Information sources for GWLF model parameterization

WEATHER.DAT file


TRANSPORT.DAT file

Basin size Land use/cover distribution Curve numbers by source area USLE (KLSCP) factors by source area ET cover coefficients Erosivity coefficients Historical weather data from National Weather Service monitoring stations

GIS/derived from basin boundaries GIS/derived from land use/cover map GIS/derived from land cover and soil maps GIS/derived from soil, DEM, and land cover GIS/derived from land cover GIS/ derived from physiography map Daylight hrs. by month Growing season months Initial saturated storage Initial unsaturated storage Recession coefficient Seepage coefficient Initial snow amount (cm water) Sediment delivery ratio Soil water (available water capacity Computed automatically for stateInput by user Default value of 10 cm Default value of 0 cm Default value of 0.1 Default value of 0 Default value of 0 GIS/based on basin size GIS/derived from soil map

NUTRIENT.DAT file

Dissolved N in runoff by land cover type Dissolved P in runoff by land cover type N/P concentrations in manure runoff N/P buildup in urban areas N and P point source loads Background N/P concentrations in GW Background P concentrations in soil Background N concentrations in soil Months of manure spreading Population on septic systems Per capita septic system loads (N/P) Default values/adjusted using AEU density Default values/adjusted using AEU density Default values/adjusted using AEU density Default values (from GWLF Manual) GIS/derived from NPDES point coverage GIS/derived from new background N map GIS/derived from soil P loading map Based on map in GWLF Manual Input by user GIS/derived from census tract map Default values (from GWLF Manual)

A visit of A visi	ion Display Output Results There Survey Analysis Braphics Wordow Help	(6) N2	<u>. IOI 8</u>
	and terms and terms terms terms terms terms terms terms terms terms	Scale 1	107.073.22 ¥
Reyneskster	and the	SII C	-as a
Veather	GWLF Model	× Jane	
Watersheit:	Generalized Watershed Loading Functions Duput File Name (No spaces) Filewate1	2	
Reads	Edit Transport File Select Input Files Average Dutput Edit Nutrient File Exit GWLF Annual Output	net Z	
Counties	© FERIISIVII	E.	2
Som	1- TAPLE	ml	
Landers Water Low Development High D evelopment		10	

LITERATURE CITED

Evans, B.M., D.W. Lehning, K.J. Corradini, G.W. Petersen, E. Nizeyimana, J.M. Hamlett, P.D. Robillard, and R.L. Day, 2002. <u>A Comprehensive GIS-Based Modeling Approach for Predicting Nutrient Loads in Watersheds</u>. J. Spatial Hydrology, Vol. 2, No. 2., (www.spatialhydrology.com).

Haith, D.A. and L.L. Shoemaker, 1987. Generalized Watershed Loading Functions for Stream Flow Nutrients. Water Resources Bulletin, 23(3), pp. 471-478.