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Sediment bacterial communities play a critical role in biogeochemical cycling in lotic ecosystems. Despite
their ecological significance, the effects of urban discharge on spatiotemporal distribution of bacterial
communities are understudied. In this study, we examined the effect of urban discharge on the
spatiotemporal distribution of stream sediment bacteria in a northeast Ohio stream. Water and sediment
samples were collected after large storm events (discharge > 100 m) from sites along a highly impacted
stream (Tinkers Creek, Cuyahoga River watershed, Ohio, USA) and two reference streams. Although alpha
(a) diversity was relatively constant spatially, multivariate analysis of bacterial community 16S rDNA
profiles revealed significant spatial and temporal effects on beta (B) diversity and community compo-
sition and identified a number of significant correlative abiotic parameters. Clustering of upstream and
reference sites from downstream sites of Tinkers Creek combined with the dominant families observed
in specific locales suggests that environmentally-induced species sorting had a strong impact on the
composition of sediment bacterial communities. Distinct groupings of bacterial families that are often
associated with nutrient pollution (i.e., Comamonadaceae, Rhodobacteraceae, and Pirellulaceae) and other
contaminants (i.e., Sphingomonadaceae and Phyllobacteriaceae) were more prominent at sites experi-
encing higher degrees of discharge associated with urbanization. Additionally, there were marked sea-
sonal changes in community composition, with individual taxa exhibiting different seasonal abundance
patterns. However, spatiotemporal variation in stream conditions did not affect bacterial community
functional profiles. Together, these results suggest that local environmental drivers and niche filtering
from discharge events associated with urbanization shape the bacterial community structure. However,
dispersal limitations and interactions among other species likely play a role as well.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

increased dominance of pollution-tolerant species (reviewed by
House et al,, 1993; Roy et al.,, 2014). Additionally, the altered hy-

Urban discharge, consisting of stormwater run-off (SWR) and
wastewater treatment plant (WWTP) effluent, is among the
greatest source of diffuse pollution of surface waters (Paul and
Meyer, 2001), including nutrients (PO4-P and ammonia [NH4-N]),
carbon (Carey and Migliaccio, 2009), bacteria, organic pollutants,
road salt, suspended solids, and metals (Gilliom et al., 2006; Lewis
et al., 2007; Paul and Meyer, 2001; Poff et al., 2006; Wenger et al.,
2009). Chemical degradation of these water bodies can have a
negative effect on lotic ecosystem function, resulting in reduced
nutrient retention efficiency, decreased biological diversity, and
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drological regime and geomorphic adjustment from WWTPs and
SWR can scour streambeds and increase erosion (Walsh et al.,
2005), reducing habitat quality and altering ecosystem dynamics
(Konrad et al., 2005; Roy et al., 2008). Although the severity of
hydrogeomorphic (Fitzpatrick and Peppler, 2010), chemical
(Beaulieu et al., 2014), and biological (Bryant and Carlisle, 2012)
alterations from urban discharge depends on spatial and temporal
differences within catchments, the overall effects on aquatic eco-
systems are well documented (Coles et al., 2004; Cuffney et al.,
2005; Paul and Meyer, 2001; Walker and Pan, 2006; Wenger
et al., 2009). Thus, urban discharge can constitute as an environ-
mental filter that potentially impacts benthic bacterial
communities.

Benthic bacterial communities perform important functions in
lotic ecosystems, such as biodegradation and biogeochemical
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cycling (Zeglin, 2015), and thus are ideal candidates for monitoring
ecological effects of urban discharge on functional characteristics of
aquatic environments (Lear et al., 2009). Additionally, stream
benthic bacteria are highly responsive to changes in the environ-
ment; they are the first to interact with dissolved substances and
can be severely impacted by perturbations (Ancion et al., 2010;
Beaulieu et al., 2014; Paerl et al., 2014). As a result of their fast
growth rates and responses to small physical and chemical changes
(Schwermer et al., 2008; Paerl et al., 2014), benthic bacterial com-
munity composition may differ temporally and spatially (i.e.
longitudinally within a stream or among different streams) in
response to environmental stimuli from urban discharge.

Overall, urban discharge impacts sediment bacterial commu-
nities in lotic ecosystems, and these impacts are spatiotemporally
variable (Fisher et al., 2015; Drury et al., 2013; Newton et al., 2013;
Parent-Raoult et al., 2005, Parent-Raoult and Boisson, 2007; Per-
ryman et al.,, 2011). Yet, the majority of studies that have focused on
microbial communities in urban aquatic ecosystems have studied
the effects of urbanization on microbial-mediated nutrient cycling
(Claessens et al., 2010; Groffman et al., 2004; Harbott and Grace,
2005; Imberger et al., 2008; Merbt et al., 2015; Perryman et al.,
2008, 2011; Rosa et al., 2013) or sewage-derived bacteria (Baudart
et al., 2000; Cha et al., 2010; Chigbu et al., 2004; Chu et al., 2014).
Effects of urban discharge on native bacterial communities have
largely been ignored (Gosset et al., 2016). In this study, urban
discharge impacts on spatiotemporal variation in benthic bacterial
community composition and environmental drivers were exam-
ined in Tinkers Creek—a tributary of the Cuyahoga River in
Northeast Ohio (USA). Effluent from WWTPs constitutes up to ~80%
of streamflow in Tinkers Creek (Tertuliani et al., 2008) and input
from nonpoint sources causes increased turbidity and sedimenta-
tion after heavy rain events (Ohio EPA, 2003). As a result, the stream
is exposed to a wide range of physicochemical variation and various
sources of inorganic and organic contamination.

Along the length of Tinkers Creek, the extent of urban land use
and the number of WWTPs increases with distance from the
headwaters; physiochemical conditions were expected to reflect
this pattern through higher nutrient loads and greater conductivity
downstream (Tertuliani et al., 2008). We hypothesized there would
be a longitudinal decrease in bacterial richness (a-diversity)
concurrently with the urban gradient and that there would be high
compositional dissimilarity (p-diversity) between Tinkers Creek
and two reference streams. Further, we hypothesized that the ur-
banization gradient reflected in Tinkers Creek physicochemistry
would result in increased compositional dissimilarity between
upstream and downstream sites and that these changes would be
reflected by fluctuations in specific functional traits. Additionally,
we anticipated that seasonal variability in stream physicochemical
parameters would result in a successional change in community
composition over the course of the sampling season. Specifically,
prior studies have shown seasonal fluctuations in temperature
(Boyero et al., 2011; Sliva and Williams, 2005; Zhang et al., 2012),
nutrient concentrations (Dodds et al., 2002; Gessner and Chauvet.,
1994; Findlay and Sinsabaugh, 2003), and streamflow
(Chiaramonte et al., 2013; Fazi et al.,, 2013; Sliva and Williams,
2005; Valett et al., 1997; Zoppini et al., 2010) to be selective
forces for the temporal shifts observed in microbial communities.

2. Methods
2.1. Study site
Tinkers Creek, a 7-order stream, drains a 250 km? watershed

with a rural/agriculture to an urban land cover gradient that spans
the length of the stream (Tertuliani et al., 2008). A small percentage

(0.3%) of the watershed is classified as agricultural land use, while
>70% is classified as commercial/industrial/transportation and
residential, and 25.5% as wetlands, grasslands/pasture or forest
(Tertuliani et al., 2008). The stream's flow is highly influenced by
discharge from 8 WWTPs (Fig. S1) and stormwater run-off. The five
sites selected for sampling were chosen to represent a wide range
of physicochemical parameters and various sources of inorganic
and organic contamination (Tertuliani et al., 2008), with only the
most upstream site not receiving WWTP effluent. Qualitatively,
substrate composition differed along Tinkers Creek, with silt/sand
occurring at the most upstream locations, which shifted to peddles/
cobbles at downstream sampling locations. Additionally, single
sampling sites were established in Furnace Run and Yellow Creek,
4th and 3"-order tributaries of the Cuyahoga River, respectively, to
serve as reference sites. Both streams are tributaries of the Cuya-
hoga River, and their watersheds are less developed compared to
that of Tinkers Creek, and they lack WWTPs (Tertuliani et al., 2008;
Table S1). Both streams meet biocriteria for attainment as specified
by the Ohio Water Quality Standards (WQS; Ohio Administrative
Code Chapter 3745-1) and Ohio EPA biological criteria (OAC Rule
3745-1-07; Ohio Environmental Protection Agency, 2003). In
contrast, Tinkers Creek is impaired based on these metrics, with
significant departures from biocriteria for fish and invertebrate
communities.

2.2. Sample collection

Water (125mL) and sediment (100g) samples (N=3) were
collected from each of the seven study sites after large rain events
(discharge > 100 m>/s; USGS discharge gauge at site 5 in Tinkers
Creek) in October and November of 2012, and in April, May, June,
July, August and September of 2013. Sampling after large rain
events was performed so as to achieve maximum levels of urban
discharge from WWTPs and stormwater. Samples were stored on
ice for transport to the lab. Water samples were collected in poly-
propylene acid washed bottles. Sediments (top 10cm) were
collected with a scoop, homogenized, and divided into subsamples
for nutrient analysis and DNA extraction. All samples were
collected following standard USGS field collection procedures
(Wagner et al., 2006).

2.3. Physicochemical variables

Dissolved oxygen (DO), conductivity, redox potential, pH, and
turbidity were measured using a Hqd/IntelliCAL Rugged Field kit
(Hach Company, Loveland, CO) and Hach turbidimeter model
2100P, respectively, during sample collection. Additionally, flow
velocity (portable water flow meter model 201; Marsh-McBirney,
Inc), and water depth and width were used to calculate discharge.

Surface water was sub-sampled, filtered and acidified as
appropriate before analysis. Dissolved organic carbon (DOC) and
dissolved total nitrogen (TN) were measured from 50 mL sub-
samples using a Shimadzu TOC/TN analyzer (Eaton et al., 2005).
Soluble reactive phosphorus (SRP) was determined from 50 mL
subsamples following Eaton et al. (2005), while dissolved ammo-
nium (NHZ-N), nitrate (NO3-N), and nitrate (NO3-N) were
measured from 15 mL subsamples colorimetrically via a modified
microplate analysis (Hood-Nowotny et al.,, 2010; Weatherburn,
1967).

For determination of nutrient content in sediments, subsamples
(20 g) were treated with a 0.5M K3SO4 solution (1:5 ratio [soil: 0.5M
K5S04]) (Ettema et al., 1999), filtered, and nitrogen and P concen-
trations were measured colorimetrically as above (Eaton et al.,
2005; Hood-Nowotny et al., 2010; Weatherburn, 1967). Benthic
organic matter (BOM) was measured via combustion on 5 g sub-
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samples of fresh sediments; percent organic matter was calculated
based on the ratio of ash-free dry mass and dry mass.

2.4. Bacterial community composition

DNA from stream sediment samples was extracted using Pow-
erSoil DNA Isolation Kits following the manufacturer's instructions
(MoBio Laboratories, Carlsbad, CA). Bacterial community compo-
sition was assessed using Terminal Restriction Length Poly-
morphism (T-RFLP) of the 16S rRNA gene as described in Blackwood
et al. (2003). PCR used primers Eub338F-0-11 and Eub338F-I-III
(forward), which were labeled at the 5 termini with 6-
carboxyfluorescein (6-FAM, Integrated Technologies) and 1392R
(reverse) (Blackwood et al., 2003). Each reaction contained 0.5 pM
of each primer, 400 ng BSA (New England Biolabs, Ipswich, MA),
and approximately 10 ng of total DNA in 30 pul reaction volumes.
Thermal cycling conditions were as follows: 1 cycle at 95°C for
3 min followed by 40 cycles at 94 °C for 30s, 57 °C for 30s, and 72 °C
for 1 min 30s, and 1 cycle at 72 °C for 7 min. PCR products were
pooled from three reactions per sample and digested with endo-
nuclease Hhal (New England Biolabs). Digested products were
cleaned using E.ZN.A DNA probe cleanup kit (Omega bio-tek,
Norcross, Georgia) and were separated by automated capillary
electrophoresis (3730 DNA analyzer; Applied Biosystems, Foster
City, CA) at The Ohio State Plant-Microbe Genomics Facility to
produce a community profile. Analysis of T-RFLP reads generated
was performed with T-REX software (Culman et al., 2009), T-RFLPs
were processed to remove peak noise and to align fragments before
further analysis in R (see below).

Given that redundancy analysis of T-RFLPs revealed spatial and
temporal differences (but no interaction effect) in bacterial com-
munities, samples were pooled and subjected to 16S rRNA gene
sequencing. DNA concentrations were standardized (10 ng uL™!)
and pooled by sampling location (samples were pooled across
sampling dates for each site) and sampling date (samples were
pooled across sites for each date). The V4-V5 hypervariable region
of 16S rRNA genes was sequenced at The Ohio State Molecular and
Cellular imaging center, via lllumina Miseq sequencing technology.
iTags generated were processed in the QIIME pipeline v1.9.1
(Caporaso et al., 2010). Paired forward and reverse reads with
ambiguities, homopolymers, as well as low-quality scores were
removed using QCing in QIIME. Reads were then assembled into
single contigs or iTags via PANDASeq (Masella et al., 2012). iTag
primer sequences and barcodes were subsequently eliminated,
contigs were edited to a uniform length of 250 bp, and then
chimeric reads detected and removed with USEARCH v 6.1 (Edgar,
2010). Quality-filtered contigs were then processed using the de
novo and reference-based OTU clustering platforms in QIIME, and
based on a >97% similarity to 16STRNA sequences in the Green-
genes reference database (Version 13.8) were assigned to opera-
tional taxonomic units (OTUs). Singletons were removed, and
results were summarized at the phylum and family levels. Reads
occurring in more than two samples with relative abundances
greater than 1% were retained for a- and B-diversity analyses. Reads
were then rarefied to 14,648 sequences per sample and used in
further analysis.

PICRUSt (Langille et al., 2013) was used to predict functional
characteristics of stream bacterial populations. PICRUSt utilized
associations between 16S rRNA gene markers found in the Green-
genes database and functional genes found in the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database to reconstruct
potential functional gene families present in the sampled com-
munities. De novo OTUs were removed and the remaining OTUs
were normalized to create a closed reference OTU table consisting
of samples with Greengenes IDs which were then used to predict

metagenomics functional profiles. To compare differences in the
functional profiles of communities among sampling sites and dates,
the relative abundance of predicted KEGG Orthologs (KOs) were
examined across three tiers of increasing functional resolution
(tiers 1-3). KOs associated with tier 1 functions “organismal sys-
tems” and “human disease” were considered irrelevant to envi-
ronmental samples and were discarded prior to further analysis.
Accession numbers: Tinkers Creek Site 1: SAMN08245559; Tinkers
Creek Site 2: SAMNO08245560; Tinkers Creek Site 3:
SAMNO08245561; Tinkers Creek Site 4: SAMNO08245562; Tinkers
Creek Site 5: SAMNO08245563; Reference Site Yellow Creek:
SAMNO08245564; Reference Site Furnace Run: SAMNO08245565;
April_pooled: SAMNO08245566; May_pooled: SAMNO08245567;
June_pooled: SAMNO08245568; July_pooled: SAMNO08245569;
August_pooled: SAMNO08245570; September_pooled:
SAMNO08245571; October_pooled: SAMN08245527; November_-
pooled: SAMNO08245537 can be found at NCBI BioSample database.

2.5. Statistical analysis

All statistical analyses were performed using R statistical soft-
ware version 3.2.0 (R Development Core Team, 2014). Grubb's tests
(package: outliers [Lukasz, 2015]), were used to identify outliers in
stream physicochemical data, which were removed before further
analysis. Physicochemical data failed to meet assumptions of
normality and homoscedasticity, and attempts at data trans-
formation were not successful. Consequently, Spearman's rank
correlations were used to explore general spatial trends in envi-
ronmental conditions within Tinkers Creek and to identify seasonal
patterns. In addition, permutational one-way analysis of variance
(PERMANOVA) (coin package; Hothorn et al., 2008) followed by
permutational multiple comparison tests (nparcomp package
[Maintainer and Konietschke, 2015]) were used to identify site-
specific differences in environmental conditions between Tinkers
Creek and reference streams. All univariate P values were corrected
following the Benjamini-Hochberg (B-H) procedure for reducing
false discovery rates (Hochberg and Benjamini, 1995).

To evaluate differences in community composition among
sampling sites and dates relative abundance data from T-RFLP
profiles were Hellinger transformed and measures associated with
a- (richness, evenness, Shannon's entropy, and inverse Simpson's
index) and PB-diversity (as Bray-Curtis distances) were calculated
using the vegan package (Oksanen et al., 2007). Measures of a-di-
versity were log-transformed to reduce homoscedasticity and both
o~ and B-diversity data were tested using a permutational multi-
variate analysis of variance. PERMANOVA (coin package; Hothorn
et al., 2008) followed by permutational multiple comparison tests
(nparcomp package [Maintainer and Konietschke, 2015]) were used
to identify site-specific or month-specific differences. All univariate
P values were corrected following the Benjamini-Hochberg pro-
cedure for reducing false discovery rates (Hochberg and Benjamini,
1995). Nonmetric multidimensional scaling was used to compare
and visualize B-diversity data (ggplot2 package; Wickham et al.,
2016). Partial redundancy analysis (vegan package; Oksanen et al.,
2007) was then performed on Hellinger transformed community
T-RFLP relative abundance data to assess effects of sampling site
and month on community composition. Additionally, a-diversity
indices (Chao 1 richness and Shannon diversity index) were
calculated to determine within sample diversity from rarefied se-
quences. A Bray-Curtis distance matrix was generated and used to
generate multidimensional scaling axes to visualize trends in
communities over time and among sampling sites. Finally, partial
redundancy analyses were used to compare community KO profiles
between sampling locations and between sampling months.
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3. Results

Several significant (Spearman rank test; P<0.05) correlations
between environmental variables associated with urban discharge
and the upstream-downstream Tinkers Creek sampling gradient
were observed (Table S2). Dissolved nutrients (TN, NO3, NO3, and
POz), as well as other abiotic variables (conductivity, pH, DO, and
rates of discharge), increased from upstream to downstream within
Tinkers Creek. In contrast, sediment nutrients (BOM, NHZ, NO3, and
PO4) and turbidity decreased. Additionally, Tinkers Creek had
significantly greater concentrations of dissolved and sediment
(extractable) nutrients compared to reference streams (PERMA-
NOVA [P < 0.001; Table S3]). Specifically, nearly all sites in Tinkers
Creek had greater concentrations of DOC, TN, sediment NHZ, and
higher readings of conductivity, pH, redox, DO, and turbidity. Dis-
solved nitrogen species (NH4, NO3, and NO3) and POz, and rates of
discharge were significantly higher in downstream Tinkers sites
(2—5) compared to reference sites.

Seasonal changes in stream physicochemical characteristics
demonstrated significant variation (P < 0.05) (Table S4). Dissolved
(NH4, NO3, POz ), BOM, and sediment-extractable (NO3z, NO3, POz)
nutrients and DO exhibited significant increases over time; nutri-
ents and higher DO measurements were observed during summer
months as compared to autumn sampling periods. This trend was
opposite for both nutrient (DOC, dissolved NO3, and sediment NHZ)
and other physicochemical variables (conductivity, temperature,
redox potential, turbidity, and discharge), which generally
decreased as sampling dates approached September.

Bacterial community a-diversity calculated from T-RFLP profiles
did not differ significantly among sites, and no longitudinal pattern
was observed in Tinkers Creek (Table 1). However, strong seasonal
differences were observed (PERMANOVA [p<0.001; Table 1]);
richness (p=-0.22), evenness (p=-0.62), Shannon entropy
(p=-0.35), and inverse Simpson (p=—0.32) indices were all
significantly, and negatively correlated with the month of sampling.
There were significant increases in diversity between November
and April, and then relatively stable values until a sharp, significant
increase in August. Although there was a 5-month lag between the
November and April sampling dates, the increase in diversity
coincided with increased nutrient concentrations (data not shown).

Sampling location and date significantly (p=0.025 and
p <0.001, respectively) affected community B-diversity based on T-
RFLP profiles. However, due to considerable variance at each site, it
was difficult to discern clear spatial patterns in B-diversity (Fig. 1a).
Seasonal effects on B-diversity were much more apparent, with a
clear separation of October and November from other months,
which exhibited far more overlap in community profiles (Fig. 1b).

Redundancy analysis of T-RFLP data revealed significant differ-
ences in community composition among sites (p =0.02; Fig. 2a)
and dates (p = 0.001; Fig. 2b); site and date interactions were not
significant (data not shown). Therefore, site and date were
considered separately. Sampling site explained 8% of the variance
among communities when partitioning out the effects of sampling
date. Ordination of the significant RDA axes showed most of the
sites clustered relatively close to one another, except for the most

upstream site in Tinkers Creek (TC1) and reference site 2 (Furnace
Run) (Fig. 2a). Despite this clustering, there was little overlap in
ordination space, as demonstrated by standard errors of commu-
nity profile means, indicating significant compositional dissimi-
larity among sites. Of the environmental variables examined, BOM,
dissolved and sediment nutrients, conductivity, pH, redox, DO, and
discharge rates were all strong predictors of bacterial community
composition (Table 2; p <0.05). Analysis of the community KO
profiles revealed that there was no significant difference in func-
tional groups regardless of functional resolution (e.g., levels 1
[Fig. 3], 2 or 3 [data not shown]) between sampling locations.
However, the majority (~51%) of functional genes were related to
metabolic function.

Sampling date accounted for a greater percentage of described
variance (14.5%) in community composition than did study site.
This was apparent in the lack of overlap in community profiles by
month and clear clustering that reflected seasonal environmental
differences (Fig. 2b). For example, spring and summer months
clustered near one another while mid to late fall communities
(October and November) clustered together. These patterns were
significantly correlated with seasonal changes in environmental
conditions (i.e., dissolved NHZ, NO3, sediment NO3, conductivity,
temperature, DO, turbidity, flow, and discharge [Table 2; p < 0.05]).
September exhibited the greatest divergence from other commu-
nity profiles, which correlated with elevated sediment NO3.

Because there was no site by date interaction from the T-RFLP
data, samples for 16S rRNA gene sequencing were pooled by date
and by site. Nonmetric multidimensional scaling (NMDS) of
sequencing data revealed marked differences in bacterial commu-
nity composition among sites and dates at phylum (Figs. S2a and
S2b), order (Figs. S3a and S3b), and family (Fig. 4a and b) levels.
Nutrients (water and sediment), and other stream abiotic proper-
ties (e.g., conductivity, redox, DO, turbidity, pH, and discharge)
were related to differences in composition among sampling site
(Fig. 4a; Tables S5a and S5b). When comparing the relative abun-
dances of specific families of bacteria across all sampling locations,
the most abundant sequences were classified as a members of the
Betaproteobacteria (Burkholderiales Comamonadaceae), which made
up ~16.4% of the sequencing reads, followed by and Bacteriodia
([Saprospirales] Chitinophagaceae) (10.9% of the reads), Plantomyetia
(Pirellulales Pirellulaceae) and Verrucomicrobiae (Verrucomicrobia
Verrucomicrobiae) (7.1% and 6.9% of the reads, respectively), and
Alphaproteobacteria (Rhodobacterales Rhodobacteraceae and Rhizo-
biales Phyllobacteriaceae) (6.8% and 4.7% of the reads, respectively).

Communities in Tinkers Creek were more similar among sites
with greater spatial proximity to each other (e.g., site 1 was more
similar to site 2 than to sites 3—5; Fig. 5a and b, Fig. S3a). Upstream
sites (TC 1—2) had a higher prevalence of families in the class
Acidobacteria-6 (iii 1—15 unassigned), Bacteroidia (unassigned
Bacteroidales), BSV26, Ignavibacteria, Anaerolineaea, Gemm-1,
Nitrospira, Verrucomicrobiae, Betaproteobacteria (SC-I-84 unas-
signed), Deltaproteobacteria, Gammaproteobacteria p < 0.05; Fig. 5a
and b). In contrast, downstream sites (TC 3—5) were dominated by
families from the class [Chloracidobacteria], Acidobacteria-6 (iii1-15
mb2424), Solibacteres, [Saprospirae], Flavobacteriia, Planctomycetia

Table 1

Sampling date? and location® effect on a-diversity of Hellinger transformed 16S T-RFLP OTU profiles. Mean = SE.
Date® October November April May June July August September
Richness 10.67 (1.00) 9.57 (0.71) 17.14 (0.960) 16.95 (2.38) 23.33 (4.59) 12.67 (1.37) 18.74 (1.84) 21(1.02)
Evenness 0.95 (0.006) 0.93 (0.007) 0.98 (0.002) 0.98 (0.003) 0.97 (0.003) 0.97 (0.005) 0.96 (0.003) 0.95 (0.003)
Location” 1 2 3 4 5 Ref.1 Ref.2
Richness 15.67 (2.03) 16.46 (2.07) 17.58 (1.58) 15.29 (1.29) 15.54 (1.42) 15.33 (1.51) 17.92 (4.02)
Evenness 0.96 (0.006) 0.96 (0.007) 0.96 (0.004) 0.96 (0.006) 0.96 (0.006) 0.96 (0.004) 0.96 (0.004)
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Table 2

Results of putative physiochemical factors affecting bacterial community composition by sampling date and location via envifit.

Dis. NH; mg Dis. NO, g S.EPNO3; mg Conductivity EC Temperature DO mg L' Turbidity —Discharge m>
L! Lt kg™! uS/cm °C NTU 57!
Sampling Date R?=0.67 R2=014 R’=0.15 R2=025 R?=0.83 R2=035 R2=028 R’=01
P= 0.001 P= 0021 P= 0015 P= 0.001 P= 0.001 P= 0.001 P= 0001 P= 0.007
BOMg !C Dis. TNmg Dis.NOsmg SRP pgpuglL™’ S.E.NH; mg Conductivity EC pH RedoxmV DO mg Discharge m*
L! L! L! uS/cm L! s7!
Sampling R’=0.36 R°=025 R’=021 R?=0.17 R?=037 R?=020 R°=033 R’=0.12 R°=026 R*=0.17
Location ~ P= 0.001 P= 0001 P= 0.003 P= 0.010 P= 0.001 P= 0.006 P= 0001 P= 0038 P= 0.00 P= 0.010

3Dis. means dissolved; "S.E. means sediment extracted.

(Fig. 5a), Alphaproteobacteria, and Betaproteobacteria (Comamona-
daceae) (Fig. 5b). Reference streams had similar community
makeup as upstream sites in Tinkers Creek; however several fam-
ilies were either only present in reference streams or had greater
relative abundance compared to upstream sites, including Bacter-
oidia (Bacteroidales SB-1), Flavobacteriia (Flavobacteriales Fla-
vobacteriaceae) (Fig. 5a), and Betaproteobacteria (Rhodocyclales
Rhodocyclaceae) (Fig. 5b).

Seasonal differences were also apparent at all taxonomic levels
(Figs. S2b and S3b; Fig. 4b). Although dissolved NH4 was the only
abiotic parameter to correlate with July community composition
(Fig. 4b), significant correlations were apparent with specific family
groups (Tables S6a and S6b). Specifically, dissolved and sediment-
extracted nutrients positively and negatively, respectively, corre-
lated with abundance within the phylum Acidobacteria, whereas
taxa within the classes [Saprospirae], Alphaproteobacteria and

Gammaproteobacteria negatively correlated with dissolved nutri-
ents and/or sediment nutrients (Table S6a). Additionally, all non-
nutrient stream measurements (Table S6b) positively correlated
with different taxa over time, except for DO concentration which
was negatively correlated to Nitrospiraceae abundance.

Seasonal differences in the prevalence of dominant families
(abundances > 3% of sequence reads) were apparent for the Chiti-
nophagaceae, Pirellulaceae, Verrucomicrobiaceae (Fig. 6a), Rhodo-
bacteraceae, and Comamonadaceae (Fig. 6b). The Comamonadaceae
was the most dominant sediment community member over the
course of this study (except during October); with abundances
peaking in June at 10.3% of sequencing reads. In October, Verruco-
microbiaceae and Rhodobacteraceae were the most prevalent
groups, making up 10% of the reads. Both families peaked again in
abundance (7.4% and 4.6% of reads, respectively) during spring
(April). Similarly, Chitinopagaceae made up a large proportion (7.3%



358

A.A. Roberto et al. /| Water Research 134 (2018) 353—369

1.001

0.751

0.50

0.251

Relative Abundance of Predicted Level 1 KEGG Orthologs

0.00

Level 1 KEGG Orthologs

- Cellular Processes

D Environmental Information Processing
. Genetic Information Processing

D Metabolism

- Unclassified

Fig. 3. Sampling location effects on predicted functional groups of OTUs in stream sediment bacteria based on KEGG database. Functional groups with less than 1% relative

abundance are not included.

o
O
a
0.2
Site
Qe
Orc2
& 00 Ores
S oo Arcs
= \/es
<>A Sediment PO4 & D Ret. 1
Sediment NH Prot2
Dissolvéd PO4 W
-0.2 DissolveBESaVES NO3
Stress =0,R2=1
v
-0.75 -0.50 -0.25 0.00 0.25 0.50
NMDS1

NMDS2

o b
0.10
Dissolved NH4 Month
%Oc\
0.05 X XXNW
A [ e
0 XX Oy
0.00 AT
Vv
QJMY
vAug
-0.05 X sont
O
-0.10
?K Stress = 0.06, R2 = 0.98
-0.10 -0.05  0.00 0.05  0.10
NMDS1

Fig. 4. NMDS plot of sampling location (a) and date (b) effect on family level OTU profiles of Tinkers Creek (sites 1-5), Yellow Creek (R1) and Furnace Run (R2). Each data point is the
mean (n = 7; pooled across sampling location, and n = 8; pooled across sampling date). Physicochemical parameters influencing differences in 16S OTU profiles were determined via
environmental fit (o < 0.05). Arrows indicate the direction of the environmental gradient, and their lengths are proportional to their correlations with the ordination.

of the sequence reads) of the community. In July Chitinopagaceae
was the most prevalent sediment community member, making up
8.2% of the sequence read. Pirellulaceaea taxa demonstrated a cyclic
peaking pattern, with increases in abundance in October, May, and
July followed by decreases in abundance in November, June, and
August.

Less prominent families also demonstrated peaks in abundance
over the course of the study. Acidobacteria peaked in abundance
during April and July, making up 4.5% and 5.7% of sequencing reads,
respectively (Fig. 6a). The Bacteroidia, Cytophagales, and Deltapro-
teobacteria taxa peaked in abundance in May, making up 8% and
4.7% of sequence reads. However, seasonal changes in community
composition did not result in distinct changes in community
function, as redundancy analysis of PICRUSt results showed no
differences in major functional profiles over time (Fig. 7). The

majority (~51%) of functional genes were related to metabolic
function, followed my genetic information processing (~20%).

4. Discussion

Urban discharge is a primary source of stream degradation in
urban areas (Parr et al., 2015). Alterations in microbial-mediated
nutrient cycling processes (Merbt et al., 2015) and increases in
fecal bacterial indicator contamination (Baudart et al., 2000; Cha
et al., 2010; Chigbu et al., 2004; Chu et al., 2014) as a result of ur-
ban discharge have been widely documented. However, there are
few reports detailing spatiotemporal variations in bacterial sedi-
ment assemblages in streams dominated by urban discharge
(Staley et al., 2013; Wang et al.,, 2011; Zhang et al., 2016). By
analyzing the sediments of Tinkers Creek and two references
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Fig. 5a. Relative abundance of non-proteobacterial taxa at family level sorted according to sampling location for Tinkers Creek (sites 1-5), Yellow Creek (R1) and Furnace Run (R2).

streams, we demonstrated that bacterial community composition
was correlated with local environmental conditions (e.g., conduc-
tivity and nutrient concentrations), which were directly influenced
by surrounding sub-watershed land use, suggesting that land use
and local stream properties influence bacterial sediment
communities.

The impacts of the urban discharge on physicochemical

variables were evident in downstream sites along Tinkers Creek
and were hypothesized to result in a longitudinal decrease in
bacterial species richness. However, despite large longitudinal dif-
ferences in water and sediment physicochemical properties, bac-
terial communities exposed to higher urban drainage in Tinkers
Creek did not differ in species richness or evenness relative to
upstream and reference stream communities. These results are
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Fig. 5b. Relative abundance of proteobacterial taxa at family level sorted according to sampling location for Tinkers Creek (sites 1-5), Yellow Creek (R1) and Furnace Run (R2).

inconsistent with other studies that have shown that higher con-
centrations of organic and inorganic nutrients associated with
anthropogenic activity may either increase (Staley et al., 2014;
Marti and Balcazar, 2014; Wakelin et al., 2008) or decrease (Lu
and Lu, 2014; Drury et al., 2013) species richness in stream sedi-
ment bacterial assemblages. The observed similarity in species
richness and evenness may imply that many of the taxa are

generalists, capable of utilizing a wide variety of nutrients
(Wittebolle et al., 2009), and/or capable of withstanding non-
extreme environmental perturbations (Staley et al, 2014;
Wittebolle et al., 2009). Along the same lines, Staley et al. (2014)
observed a significant difference in diversity between forested
and urban sites, but not between agricultural and urban sites, and
suggested that the lack of differences was attributable to the
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similarity in anthropogenic disturbance between the sites (i.e., In spite of similarities in species richness among sites, bacterial
similar nutrient and contaminant loads). Alternatively, our results community composition differed among sites. Longitudinal differ-
may reflect the large number of dormant cells within these com- ences in composition in Tinkers Creek were strongly connected to
munities, which has been documented to affect species richness, as environmental conditions, including nutrient concentrations, DO,

dormant individuals are capable of withstanding environmental conductivity, redox, and discharge. This suggests that species
perturbations (Lennon and Jones, 2011). sorting had a strong impact on sediment bacterial communities,
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with local habitat conditions selecting for specific groups of bac-
teria (Gibbons et al., 2014; Heino et al., 2014; Staley et al., 2013). The
degree of connectivity between lotic systems and adjacent terres-
trial systems are influenced by drainage density and hydrological
exchange, which can have a direct impact on microbial commu-
nities in streams (Hullar et al., 2006). The bacterial communities in

our study encompassed microbes of terrestrial, aquatic, and human
origins, with the mixture of bacteria from different putative sources
varying among sampling locations.

More urbanized sites (TC 3—5) included taxa associated with
nutrient pollution and other anthropogenic disturbance. The fam-
ilies Comamonadaceae, Rhodobacteraceae, and Pirellulaceae were
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among the most dominant groups at downstream sites—account-
ing for up to 29% of sequence reads at these sites. Members of these
families are commonly found in freshwater environments (Pujalte
et al., 2014; Willems, 2014; Youssef and Elshahed, 2014), but are
most known for being dominant groups in nutrient-rich environ-
ments (Rosenberg et al., 2013; Tang et al., 2017; Vetterli et al., 2015;
Yu et al., 2017; Youssef and Elshahed, 2014). Other taxa with
elevated abundance at sites with more urban impact included
Phyllobacteriaceae (5.7% of sequences) and Sphingomonadaceae
(6.13% of sequences). Phyllobacteriaceae taxa have most commonly
been studied with regard to degradation of xenobiotic and recal-
citrant compounds, such as thiophene (Bambauer et al., 1998),
phenols (Fritsche et al., 1999), naphthalenesulfonates (Ghosh and
Dam, 2009), ethylenediaminetetraacetic acid (Doronina et al,
2010), and thiophene-2-carboxylate (Bambauer et al., 1998). Like-
wise, Sphingomonadaceae are often found in high proportions in
habitats contaminated with recalcitrant (poly) aromatic com-
pounds of natural (Glaeser et al., 2010; Rosenberg et al., 2013) or
anthropogenic origin (Basta et al., 2005; Romine et al., 1999;
Sprenger, 1993; Rosenberg et al., 2013). The relative dominance of
these two families in downstream sites may reflect increased in-
dustrial contaminants present in WWTP effluent, as the treatment
facilities receive chemicals and other wastes from industrial sour-
ces. Alternatively, these taxa may serve as an indicator of the degree
of urbanization occurring upstream of these sites as stormwater
runoff from street drains enters this stream from a variety of
locations.

Other families that were prevalent at downstream sites are not
well characterized in terms of their ecological role in aquatic sys-
tems, including Ellin 6077 RB411 (Chloracidobacteria), mb2424
(Acidobacteria-6 iii1-15), Cryomorphaceae and Chitinophagaceae.
Taxa within the phylum Acidobacteria are known for their resis-
tance to pollutants like petroleum compounds (Abed et al., 2002),
p-nitrophenol (Paul et al, 2006), linear alkylbenzene sulfonate
(Sanchez-Peinado et al., 2010), and uranium (Ellis et al., 2003;
Gremion et al., 2003; Barns et al., 2007), whereas, Bacteroidetes
are prevalent in organic-rich systems (Crump and Hobbie, 2005;
Huang et al., 2008; Obernosterer et al., 2011; Wang et al., 2011).

Therefore, the dominance of Acidobacteria and Bacteroidetes in
more urbanized sites may indicate the prevalence of organic
wastewater compounds within Tinkers Creek (Tertuliani et al.,
2008). In general, the variety of taxa found in high abundance in
downstream sites of Tinkers Creek suggests that effluent from the
WWTPs plays a strong role in shaping the stream bacterial com-
munities, as different contaminants from these WWTPs may have
different selective forces on community composition.

In contrast to the more urbanized sites, a large percentage
(~32%) of the taxa prevalent in the less urbanized sites (Tinkers
Creek 1 and 2, Ref 1 and 2) has syntrophic and fermentative life-
styles. Members of the family Sytrophaceae are commonly found in
anaerobic freshwater sediments (Jackson et al., 1999; Shelton and
Tiedje, 1984; Wallrabenstein and Schink, 1994), and are capable
of fermenting substrates that are utilized by H/formate-utilizing
partners (Kuever et al.,, 2005; Schink, 1997). The Desulfobulbaceae,
Syntrophobacteraceae, and Geobacteraceae are sulfate/sulfur-
reducing bacteria (Kuever et al., 2005; Muyzer and Stams, 2008)
and/or other metal-reducing bacteria (Holmes et al., 2004, 2004a,
2004b; Kuever, 2005; Roling, 2014), respectively. Although mostly
known for their ability to utilize sulfur or other metal compounds
as their terminal electron acceptors, genera in these families have
an important role in the anaerobic fermentation oxidation of
organic compounds (Aklujkar et al., 2012; reviewed in Muyzer and
Stams, 2008; Roling, 2014). Thermodesulfovibrionaceae, such as
Deltaproteobacteria detected in this study, are sulfate reducers with
chemoorganoheterotrophic or chemolithoheterotrophic lifestyles.
During chemolithoheterotrophic growth, genera of this family use
H, as electron donor and acetate as a carbon source (Henry et al.,
1994). Additionally, Crenotrichaceae (Gammaproteobacteria),
which was only found in upstream sites of Tinkers, is a type Ib
methanotroph group. These organisms are facultative aerobes that
utilize methane and methanol, or other C; compounds as sub-
strates (Bowman, 2014; Stein et al., 2012; Stoecker et al., 2006).
When considering the relatively high diversity of fermenters and
sulfur/sulfate-reducing taxa found in the upstream sites and
reference streams, the microbial communities may be structured
by inputs from groundwater and the hyporheic zone (Griebler and
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Lueders, 2009; Storey et al., 1999). Although we lack data on the
source of water at the different sites, the difference in community
composition and the differences in sediment composition (with
fine sediment at upstream sites and pebbles/cobblestones at
downstream sites) suggests a switch from deep to shallow water
flow-paths longitudinally, thus supporting the notion that local
sampling environment can influence the structure of the microbial
community within the stream (Heino et al., 2014; Cloutier et al.,
2015).

Overall, the dissimilarities in bacterial community composition
among upstream, downstream, and reference sites reflect OTU-
specific environmental tolerances to local conditions (Comte
et al., 2014; Comte and Del Giorgio, 2009; Newton et al., 2011;
Philippot et al., 2010; Wang et al., 2011). However, it is difficult to
ascertain how much of these differences are due to site character-
istics (land use and/or physical-chemical) that differ along the
longitudinal gradients in and among these streams, and how much
is due to dispersal limitations (Crump et al., 1999; Astorga et al.,
2012; Lindstrom and Langenheder, 2012), interactions among
species (Fortunato and Crump, 2011; Glibert et al., 2012), or some
combination of the three (Astorga et al., 2012). Future work to tease
apart the contributions of spatial proximity and shared environ-
mental characteristics will be required. Nevertheless, these results
suggest that differences in water chemistry attributable to urban
discharge served as a selective force on bacterial taxa in these
streams (Astorga et al., 2012; Beier et al., 2008; McArthur and
Richardson, 2002).

Seasonal changes in the dominant sediment bacterial pop-
ulations were correlated with changes in aqueous phys-
icochemistry across all sites, as predicted. These results are
consistent with previous studies that have discovered shifts in
microbial composition linked to seasonal variation of water phys-
icochemical properties (Duarte et al., 2016; Moss et al., 2006;
Yannarell et al., 2003) and allochthonous inputs (Dann et al.,
2017). Alterations in stream temperature, light penetration,
organic and inorganic concentrations in the water column and
sediments over the annual period may have shaped the changes
observed in the community composition of sediment bacteria in
these systems.

Distinct groupings of bacterial families became more prominent
on particular dates, revealing the highly dynamic nature of the
bacteria in these streams. Fall-dominant families contained known
degraders of recalcitrant litter (Verrucomicrobia; Stevenson et al.,
2004; Wymore et al., 2016) and humic substances (Sphingomona-
daceae; Glaeser et al., 2010; Glaeser and Kampfer, 2014). Specif-
ically, these groups are important for their utilization of humic
substances, and ability to degrade recalcitrant high-molecular
weight compounds (Glaeser et al., 2010; Wymore et al., 2016),
suggesting that these organisms play an important role in carbon
cycling in our streams.

Spring-dominant families belonged to phyla that are often
found associated with algae (Planctomycetes; Bengtsson and
@vreas, 2010; Bohorquez et al., 2017), and microbial mats (Allen
et al., 2009; Baumgartner et al., 2009) or biofilms (Bacteroidetes;
Bartrons et al., 2012; Bohorquez et al., 2017) during high levels of
algal activity. Taxa within Planctomycetes have the ability to
degrade sulfated polysaccharides of algal origin (Kim et al., 2016;
Lage and Bondoso, 2014), whereas members of Bacteroidetes can
degrade organic compounds that may be released from algae; thus
suggesting that they have an ecological role in the degradation of
polysaccharides produced by algae in streams. Alternatively, the
high prevalence of Bacteroidetes and Phyllobacteriaceae may indi-
cate a higher prevalence of discharge from WWTPs, or runoff
during the rainy season (Bambauer et al., 1998; Drury et al., 2013;
Doronina et al., 2010; Eichmiller et al., 2013; Fritsche et al., 1999;

Kampfer, 1999). In comparison, summer was dominated by taxa
in families that have wide genetic diversity, such as Comamona-
daceae. Taxa within this group are known denitrifiers (Adav et al.,
2010; Etchebehere et al., 2001; Khan et al., 2002; Wu et al., 2013),
fermenters (Chen et al., 2013; Finneran et al., 2003; Kim et al.,
2012), aerobic organotrophs (Kim et al., 2012; Liang et al., 2011),
photoheterotrophs (Hiraishi et al., 1991; Madigan et al., 2000) and
photoautotrophs (Zeng et al., 2012), which suggests that these or-
ganisms are involved in a variety of biogeochemical processes in
aquatic ecosystems (reviewed by Willems, 2014). It should be
noted, however, that more detailed phylogenetic work needs to be
done to link function with phylogeny, especially with largely un-
cultured groups such as Verrucomicrobia, or for groups with un-
known ecologies (i.e., Chitinophagaceae). However, our results
suggest that in stream systems, seasonal changes allow for different
and distinct combinations of bacterial populations to become
prominent members of the community at different times of the
year (Gilbert et al., 2012, 2009; Shade et al., 2013; Portillo et al.,
2012).

Although site and date differences were observed in sediment
bacterial community composition, we did not see any significant
differences in functional profiles over space or time. Functional
resilience to disturbance is possible if the microbial community
contains individuals that have versatile physiologies (Evans and
Hofmann, 2012). Core communities found in these systems were
comprised of families that had a vast network of genera capable of
performing a wide array of biogeochemical cycles. For example,
genera in the family Comamonadaceae and Rhodocateraceae have
metabolic capabilities that span a wide variety of cycles, such as
organotrophs, denitrifiers, hydrogen oxidizers, photoheterotrophs,
photoautotrophs, fermenters, Fe>*-reducers (Baldani et al., 2014;
Willems, 2014; Pujalte et al., 2014). Most genera in these families
have an aerobic heterotrophic metabolism but are capable of
switching to other metabolic forms depending on the substrate or
electron acceptor availability (Willems, 2014). One such group,
purple nonsulfur bacteria, can be heterotrophic under aerobic
conditions and phototrophs under anoxic conditions (Hiraishi and
Imhoff, 2005; Pujalte et al., 2014). Through altering metabolic ca-
pabilities (Meyer et al., 2004; Swingley et al., 2007) or genetic
change (Evans and Hofmann, 2012; Lenski, 2017; De Meester et al.,
2016), bacteria can often overcome detrimental environmental
change by exploiting previously unavailable resources. Thus,
changes in community composition may not correspond with the
response, or the lack thereof, in community functional profiles
(Allison and Martiny, 2008).

Alternatively, a large fraction of the community may be dormant
(Lennon and Jones, 2011), which is common among communities
living in temporally and spatially dynamic environments (Lennon
and Jones, 2011; Pedrés-Alié, 2006; Rehman et al., 2010). In fact,
dormant individuals of bacterial communities directly affect spe-
cies diversity (Chesson, 2000) by acting as seed banks. Seed banks
can contribute to the stability of ecosystem processes through the
facilitation of niche complementation and/or functional redun-
dancy (Loreau et al., 2001; Petchey and Gaston, 2002). This can
occur as previously dormant groups become more prevalent under
certain conditions while functionally complimentary groups or
those functionally similar, but less tolerant to current environ-
mental conditions revert to dormancy; however, compensatory
growth of these groups may result in minimal change in ecological
processes (Fernandez-Gonzalez et al., 2016; Frost et al., 1995;
Schindler, 1990). In general, the functional attributes of stream
sediment bacteria in this study appear to be similar across a board
range of land uses, suggesting that there is a high degree of func-
tional gene redundancy (Qu et al., 2017) and a reduction of func-
tional diversity (Cardinale et al., 2012; Elmqvist et al., 2003; Jung
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et al., 2016). As such, adaptation of local communities to changing
environmental patterns can be independent of functional change in
communities (Bier et al., 2015; Frost et al., 1995; Fernandez-
Gonzalez et al., 2016; Ostman et al., 2010; Reiss et al., 2009).

Overall, the predicted functional profile of the microbial
community—as determined by PICRUSTe's algorithm—provides a
coarse overview of the functional potential present within the
community; however, these results must be interpreted with
caution. Rarefaction of pooled DNA samples fails to capture the full
extent of diversity present within the system, which is likely re-
flected in the predicted functional profile. Additionally, individual
functional genes may not necessarily be correlated with commu-
nity structure (Fierer et al., 2012), as the placement of novel di-
versity cannot accurately be mapped into a phylogenetic context
due to the fact that a large proportion of bacterial phylogeny is
poorly identified (Harris et al., 2013). To adequately assess gene
categories deeper sequencing would be required (Fierer et al.,
2012). PICRUSt can neither preclude or outperform deep meta-
genomic sequencing (Langille et al., 2013); the algorithm is signif-
icantly affected by the phylogenetic dissimilarity among
environmental samples and sequenced genomes (Langille et al.,
2013). Thus, we suggest that further studies that utilize both met-
agenomic sequencing and marker gene studies are needed in this
system and that more samples are required to adequately assess
intra- and inter-stream variability.

5. Conclusion

Although a-diversity was relatively constant both spatially, we
found that urban drainage impacts bacterial community structure
in streams, with greater prevalence of bacteria associated with
urban discharge in downstream sites in Tinkers Creek. Moreover,
we found evidence for indirect seasonal effects, as nutrient and
hydrologic characteristics influenced bacterial community assem-
blage within our streams. However, there were no spatial or tem-
poral effects on the core community function. Our results suggest
that deterministic forces are important for community assembly
and that differences in B-diversity between sites and over time are
predominantly due to changes in the relative abundance of a core
community. This work demonstrates that urban drainage has a
marked impact on shaping benthic bacterial communities; yet,
these changes seem not to have an impact on sediment bacteria
function. This suggests that communities in urban environments
may be more resilient to disturbance via versatile physiologies and/
or functional redundancy. Although there were no changes in the
sediment bacteria functional profiles, changes in the composition
of microbial communities may affect the energy requirements and
expenditures of the communities (Bier et al., 2015; Canedo-
Argiielles et al.,, 2014; Nieuwdorp et al., 2014; de Ruiter et al.,
1995), which in turn may affect the trophic transfer of energy in
stream food webs.
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